
Evaluation of digital elevation models (DEMs) from high and low pulse density in LiDAR 

data 

 
Carlos Alberto Silva 

1
  

Andrew Hudak 
2
  

Robert Liebermann 
2
 

Kevin Satterberg 
3
  

Luiz Carlos Estraviz Rodriguez 
1
  

 
1 
University of Sao Paulo - USP/ESALQ 

Post office box 96 - 13416-000 - Piracicaba - SP, Brazil
 

Carlos_engflorestal@yahoo.com.br 

lcer@usp.br 
2
Rocky Mountain Research Station, US Forest Service 

1221 S. Main St. Moscow, Idaho 83843- Idaho, USA 

ahudak@fs.fed.us 

rjl@mail.ru 
3
University of Idaho –Idaho/USA

 

Post office box- 83843 - Moscow - Idaho, USA
 

kevinlsatterberg@gmail.com 

 
Abstract.  In this paper we evaluated and compared digital elevation models (DEMs) and tree height estimation 

from high and low pulse density LiDAR data. To compare DTMs were calculated root mean squared error (RMSE), 

coefficient of variance of the root-mean-square error (CV-RMSE) and mean absolute error (MAE). To tree height 

estimation was inventoried four hexagonal plots, each approximately 1 ha in size. Within the plots were stem-

mapped and measured individual tree height. Based on our results, we conclude that low pulse density LiDAR can 

be applying to terrain model create, however, recommended just to DTM created. Furthermore, when desire 

biometrics tree estimation from LiDAR, we recommended that use high pulse density, because this is more 

accuracy.  
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1. Introduction  

 
LIDAR (Light Detection and Ranging) is an optical remote sensing technology that has been 

an efficient tool to characterize digital elevation models (DEM). According Hudak et al. (2009), 

applications of LiDAR remote sensing are exploding, while moving from the research to the 

operational realm. Increasingly, natural resource managers are recognizing the tremendous utility 

of LiDAR-derived information to make improved decisions. The DEMs derived from the LiDAR 

data include the Digital Terrain Model (DTM) and the Digital Surface Model (DSM); subtracting 

the DTM from the DSM yields the Canopy Height Model (CHM) (Perko, 2010) (Figure 1). 

There are many factors that affect the accuracy of DEMs, with the main factors including the 

accuracy, density and distribution of the source data, the interpolation algorithm, and the DEM 

resolution (Priestnall et al., 2000). Some studies like Peuetz at al., (2009) focused on the effects 

of LiDAR pulse density on DEM accuracy.   

The aims of this study were (i) to compare the DEMs (DTM, DSM and CHM) derived from 

low versus high density LiDAR; (ii) to estimate tree height from high and low pulse LiDAR 

data; and, (iii) to evaluate the performance of low pulse density LiDAR on DEMs creation and 

tree height estimation. The hypothesis was that pulse density has strong influence on LiDAR 

products, and high pulse density performs better at the individual tree level. 
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Figure 2: Explanation of relation between digital surface model (DSM), digital terrain model 

(DTM) and canopy height model (CHM). (Perko, 2010).  

 

2. Methodology 

 

2.1 Study Area 

The study area is located in the west-central area of Eglin Air Force Base (AFB) in the Florida 

panhandle at approximately 30° 30' 46",  -86° 50' 30". The predominantly longleaf pine forest is 

characterized by an open canopy structure with up to 50% canopy cover. 

 
Figure 2. Study Area.  Eglin AFB is the outer red outline, and the study area is the inset.  
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2.2 Field data Collection  

The study area boundary was defined by the spatial extent of high density airborne LiDAR 

dataset used in this analysis (described below). Four hexagonal plots, each approximately 1 ha in 

size, were wholly contained within this area, plus the southern half of a fifth hexagonal plot on 

the northern edge (Fig. 1). We measured individual tree height (ht), diameter at breast height 

(DBH) at 1.37 meters above ground, and density of trees per hectare (TPH) (Table 1).  

 

Table 1. Descriptive statistics of forest inventory plots. 

Character Tree height (m) Density of tree (Nº/ha) 

Mean 14.06 489 

Standard deviation 1.73 204 

Minimum 12.26 145 

Maximum 16.64 643 

 

2.3 LiDAR surveys and data processing 

The Lidar data include two discrete datasets. The first dataset with relatively high pulse 

density was collected 5-6 February 2011 by Kucera International using a Leica ALS60 sensor 

operating in MPiA mode. The second dataset was collected with low pulse density using a Leica 

ALS-50 on 28 February 2006. The LiDAR data were classified as Unclassified, Bare Earth, and 

Low/Noise Points using standard classification number tagging. 

    

Table 2. Flight parameters and scanning system settings. 

Parameters High pulse density Low pulse density 

Laser pulse density (nominal) 4.5 pulses/m
2
 1.0 pulse/m

2
 

Laser pulse rate 176,100 Hz 44,000 Hz 

Maximum returns per pulse 4 4 

 

We used FUSION (McGaughey, 2012) and LAStools (LAStools, 2012) software for LiDAR 

data processing (Figure 2). 

 
Figure 1. Steps to individual tree processing (DTM: Digital Terrain Model; DSM: Digital 

Surface Model; CHM: Canopy Height Model). 

 

LiDAR processing was performed using the CanopyMaxima tools in FUSION software for 

individual tree detection. The LiDAR metrics measured were the mean, minimum and maximum 

tree heights.   
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Figura 3. Illustration 3-D LIDAR point clouds in LiDAR Data view in Fusion. A) LiDAR points 

clouds of plot, B) Mean tree height, C) Minimum tree height and D) Maximum height 

 

To compare DTM, DSM and CHM created from both LiDAR densities, we extracted 3000 

randomized points using ArcGIS 10 software, and compared them using the Root Mean Squared 

Error (RMSE), Coefficient of Variance of the RMSE (CV-RMSE) and Mean Absolute Error 

(MAE): 
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Where y_i is predicted value (in this case is low pulse density LiDAR) and x_i is the actual 

value (high pulse density LiDAR).  ̅ is the average of the observed values and  ̅ is the average of 

the predicted values. This statistics were calculated using R Project for Statistical Computing  

software (R Development Core Team. 2007). Histograms and other graphics to illustrate the 

results were created with ggplot2. 

 
Figura 4. Randomized points in study area extracted to compare DTM, DSM and CHM. 

  

A) 
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3. Results and Discussion 

 

3.1 Descriptive statistics of the elevation models. 
 

Histograms in Figure 5 show skewed (non-symmetric) distributions in the 

elevation models. Distributional shapes were similar between the low and high density 

LiDAR derived DTMs but much less similar between the DSMs and CHMs. 

 
Figure 5. Histograms of randomized points extracted from elevation models.  DTMs (A 

and B), DSMs (C and D) and CHMs (E and F) . 

 

 

Scatter plots in Figure 6 show a close relationship exists between the low and high 

density LiDAR derived DTMs. However, correlations between DSMs and CHMs were 

inconsistent and biased. 

 
Figure 6. Randomized points extracted and compared between low and high density LiDAR 

derived elevation models. A) DTMs,  B) DSMs and c) CHMs. 

 

 

 

A) B) C) 
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3.2 Comparation of the elevation models from low and high pulse density 

 

Table 2 shows the statistcs used to evaluate the elevation models created from low and high 

pulse density LiDAR. The DTMs derived from low and high density LiDAR differed little, the 

CHMs the most, and the DSMs to an intermediate degree.. In general, the lower pulse density 

LiDAR slightly overestimated the DTM height, but greatly understimated the DSM and CHM 

heights relative to the elevations estimated from the higher density LiDAR.  

 

Table 2. Statistical tests applied to evaluate elevation models. 

Parameter 
Statistic test 

RMSE CV-RMSE (%) MAE (%) 

DTM 0.1652 0.4761 0.3788 

DSM 6.9454 17.6425 -9.2795 

CHM 6.8743 147.7702 -78.0462 

 

3.3 Tree heights obtained from low and high pulse density LiDAR at field validation 

plots 

 

The results in figure 7 show that in general tree height estimation from both high and low 

density LiDAR was underestimated when compared with field data. When estimated tree heights 

were compared between the high and low densitiy LiDAR, the higher pulse density was more 

accurate. In all cases, estimated tree heights using the low pulse density LiDAR was  below those 

estimated using the high pulse density, as well as more different from the field validation 

measurements. Also, figure 7 shows that the maximum tree height estimation from LIDAR was 

most accurate, followed by the minimum and average, using either LiDAR pulse density. A 

possible explanation for the low pulse density not performing as well for tree height estimation is 

that the point density applied was insufficient to detect all the trees, particularly the medium and 

small trees. 

 
Figure 7. Tree heights from field plots used to validate low and high pulse density LiDAR. Ht: 

tree height, HD: High pulse density and LD: low pulse density. 
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3.4 Maps DTM, DSM and CHM created 

 

  
                    

  
 

  
 Figura 8. DTM (top), DSM (middle) and CHM (bottom) from low (left) and high (right) density 

LiDAR.  
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4 Conclusion 

 

We conclude that low pulse density LiDAR can be used to create elevation models, however, 

we recommend just creating a DTM and not the DSM or CHM. Furthermore, when tree-level 

estimates from LiDAR are desired, we recommend the use of high pulse density for more 

accurate results.  
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