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ABSTRACT 

 

Our goal in this study was to perform a LULC classification 

for the southern part of Roraima state. This area has a highly 

frequent cloud cover and a lack of LULC information. We 

used a SAR-Optical multisensory methodology, with a cloud 

computing process, to be able to classify all the areas, with 

less computational effort and in less time. Our results show 

an Overall Accuracy of 92.61%, with Users' and Producers' 

Accuracy (UA and PA), around 90% for all ten classes. Also, 

this approach identified important classes for the region, such 

as perennial crops and conversion areas. 

 

Key words — microwave data, random forest, google 

engine, amazon region. 

 

1. INTRODUCTION 

 

Increasing food production meanwhile minimizing the 

environmental impacts is one of the biggest challenges to be 

faced by the agriculture sector, government, and researchers. 

Part of this food demand is met by agriculture expansion, 

resulting in severe environmental impacts, and contributing 

to global climatic changes [1]. In this sense, continuous Land 

Use and Land Cover (LULC) mapping is fundamental to land 

use management and to understanding the environmental 

effects at local, regional, and global scales [2]. Thus, Remote 

Sensing (RS) technology is widely utilized for synoptic and 

continuous LULC monitoring, allowing the identification of 

the LULC Changes (LULCC) [3].  

Even though LULC map information is highly important for 

the management of tropical areas, there is a lack of 

information for some regions in the Brazilian Amazon. For 

example, the Savannas and Campinarana areas in Roraima 

are not considered yet in programs designed for forest 

monitoring despite their ecological importance. Besides, in 

this region, the use of optical sensors suffers negative impacts 

due to a high cloud cover frequency [4]. To work around the 

shortage of optical data, the use of microwave sensors 

(Synthetic Aperture Radar) appears as a possible 

workaround. SAR sensors are less influenced by cloud cover 

frequency when compared with optical data [3]. Methods that 

integrate optical and SAR data have been explored in LULC 

studies [5], [6].  

However, the quantity of data generated demands 

high computation power and large space for storage. A way 

to overcome this is by using cloud processing platforms [7]. 

To decrease data volume, it is possible to use different 

metrics to explore the temporal variation from the remote 

sensing data. This statical transformation of an image time 

series is called multi-temporal metrics, which can be very 

useful for LULC characterization [6]. 

On the SAR-Optical approach, Random Forest (RF) 

is one of the most commonly non-parametric classifiers used 

to provide LULC classification. The RF classifier is 

highlighted due to its robustness and capability to hold a high 

number of variables and high data dimensionality [2], [5].   

In this context, this study aims to classify the LULC 

in a tropical area, in the south of Roraima state, in the 

Brazilian Amazon region. In our study, we used RF and 

combined the Sentinel-1 SAR and Sentinel-2 MSI 

(Multispectral Instrument) optical images, acquired in 

different periods during the year 2019.  

 

2. MATERIAL AND METHODS 

 

2.1. Study area  

Our study area comprehends five municipalities 

(Rorainópolis, Caracaraí, São Luiz, São João da Baliza, and 

Caroebe) located in the southern part of Roraima (Figure 1).  

In this area is predominant the pasture and the small 

agriculture areas. Besides, this region has been monitored by 

the Brazilian Agricultural Research Corporation, Embrapa 

Roraima projects, as TERRAMZ (Conhecimento 

Compartilhado para Gestão Territorial Local na Amazônia). 

In this area, there are three groups of natural 

vegetation formations in our study area: rainforest, campina-
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campinarana, and savannas (Figure 1). Rainforest is divided 

into Seasonal Semideciduous Forest, Seasonal Forest, Open, 

and Dense Ombrophilous Forest. Campina-campinarana is 

formed by campinas (small shrubs) and campinarana. 

Savannas are predominated by grasslands with few shrubs. 

Some regions show ecologic tension, where the transition 

between two or more types of vegetation occurs, such as 

Savannas and Forests, and Campinarana and Forest [2]. 

 

 

Figure 1. Location of the study area and Roraima natural 

formations according to IBGE. Source: Adapted from IBGE 

[8]. 

 

2.2. Remote Sensing 

We used data from Sentinel-2/MSI and Sentinel-1/SAR data. 

For Sentinel-2, we used the data from the spectral bands and 

the NDVI, and the Land Surface Water Index (LSWI), 

vegetation Indexes (VIs). For Sentinel-1 SAR it was used the 

IW mode and Ground Range Detected (GRD) data types, 

with polarization, are VH and VV. Also, we used the ratio 

between the VH and VV polarizations. To summarize the 

image collections, we used standard deviation, minimum, 

maximum, and median metrics for Sentinel-1 and Sentinel-2 

data. For Sentinel-1, the metrics were calculated separately 

for each satellite (Sentinel-1A and Sentinel-1B).  
 

2.3. Field data 

Accurate and representative field information is 

essential for LULC and LULCC classifications, so it is 

crucial to choose proper periods for field data collection. We 

performed fieldwork in Roraima in August-September 2019, 

which correspond to the crop season and the end of the rainy 

season, allowing us to collect field data from all 

representative LULC classes, including rainfed crops. We 

collected the LULC data for classification training purposes, 

along the roadsides [9], using the Locus Map Pro 

applications. Our data represents 10 LULC classes: forest, 

savanna, campinarana, water, sand/rock, annual crops, 

perennial crops, pasture, conversion, and impermeable (see 

[6] for details and pictures) 

 

2.4.  Classification 

In our approach, Sentinel-1 was used for three different 

periods; P1: January to April; P2: May to August; and P3: 

September to December, for each year (2017, 2018, and 

2019). P2 represents the rainy season and P1 and P3 represent 

the dry season in Roraima. Due to the low number of cloud-

free pixels [4], we adopted to use of Sentinel-2 data for the 

entire year and not only for each period. In total, there are 216 

bands (layers), 144 for Sentinel-1/SAR and 72 for Sentinel-

2, as input for the classification process. 

The GEE platform [7] was used for the LULC 

classification process, along with the RF algorithm. Inside 

GEE, we filtered all Sentinel-2 and Sentinel-1 images 

available from Roraima. Also, we used all images with less 

than 50% of cloud cover. To remove the clouds and shadows, 

we filter using the Bits and Sentinel-2 cloud probabilistic 

[10], with a threshold of 65%. 

After, we used a stratified sampling approach to 

sample a maximum of 5000 pixels per class. For this set, we 

randomly split 70% for training and 30% for the validation 

process. For the RF, we set up 100 the number of trees, and 

the other parameters were left as default at GEE. The 

classification results were generated with 20 meters of pixel 

size. As post-classification, we used a mode filter (kernel in 

circle and radius equal to 1) in a post-classification step to 

smooth the results and avoid isolating misclassified pixels. 

To access the accuracy classification, from the confusion 

matrix, we extracted the overall accuracy (OA), user’s 

accuracy (UA), and producer’s accuracy (PA) [11]. 

 

3. RESULTS 

 

Our approach achieved an OA of 92.61%. According to the 

confusion matrix, Table 1, most classes have UA and PA near 

or higher than 90%. The lower accuracy was found for the 

annual crop class (UA = 41.1%), with confusion with the 

pasture class 

 

 1 2 3 4 5 6 7 8 9 10 UA 

1 1505 0 22 1 6 0 0 19 13 0 96.1 

2 0 71 0 0 0 0 0 0 2 0 97.3 

3 51 0 1362 13 23 0 0 3 35 1 91.5 

4 0 0 16 1498 1 0 0 0 0 0 98.9 

5 12 0 31 0 1345 0 0 90 39 0 88.7 

6 1 0 7 16 3 239 0 1 2 2 88.2 

7 0 0 0 0 35 0 30 4 4 0 41.1 

8 10 0 1 0 137 0 0 1367 0 0 90.2 

9 2 0 6 0 44 2 0 10 1242 0 95.1 

10 0 0 2 0 5 2 0 3 0 144 92.3 

PA 95.2 100 94.1 98 84.1 98.4 100 91.2 92.9 98  

Table 1. Confusion matrix (number of pixels) and Users (UA) 

and Produces (PA) Accuracies (in percentage) for the LULC 

classification. 1: Forest, 2: savanna, 3: campinarana, 4: water, 5: 

pasture, 6: sand/rock, 7: annual crops, 8: perennial crops, 9: 

conversion, 10: impermeable. 
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This higher commission error means that our 

approach overestimates the annual crop area. The omission 

error for Annual crops was small (high producer accuracy) 

than the commission error. Almost all our reference data 

(field data) are correctly classified as annual crops. 

According to the variable importance (Figure 2), to 

achieve this result, the more important features are from 

optical data. NDVI max and Band 11 (Swir) percentile 75% 

and median have the more important contribution. Other 

metrics from LSWI, B5 (Vegetation Red Edge), B12 (Swir), 

B3 (Green), and B4 (Red), appear among the 10 more 

important variables. 

 

 
Figure 2. List of the 10 more important variables for LULC 

classification for the year 2019. 

 

Rainforest class is predominant in our LULC 

classification (Figure 3 and Figure 4)  for all five 

municipalities. Campinarana is more frequent in 

Rorainópolis and Caracarai municipalities. Pasture, 

conversion areas, and perennial crops are the predominant 

anthropic classes (Figure 5). Caracaraí has the biggest 

conversion, pasture, and perennial crop amount area (Figure 

5). Rorainópolis is the second one in the area for the same 

classes. 

 

 

Figure 3. LULC classification for the year 2019, and zoom 

views for conversion areas. 

 

 
Figure 4. LULC classification percentage for each municipality 

for the year 2019. 

 

 

 

 
Figure 5. Detailed LULC classification area (in hectares) 

distribution for conversion, pasture, and perennial crop classes, 

for each municipality for the year 2019. 

 

4. DISCUSSION 

 

Our results show a way to provide LULC information using 

a cloud computing platform and multisensor data. This 

allows us to obtain LUC information with less 

computational effort in a minimum amount of time.  

Although SAR data does not appear among the more 

important variables in our results, it was verified in previous 

studies [6] that they contribute to certain classes. Besides, in 

areas with frequent cloud cover, SAR data could be the only 

source of information.  

Annual crops happen in a few fields in our study. 

Besides, is more for subsistence and small fields. Due to these 

factors and the seasonality of the region, some confusion with 

pasture was expected. The perennial crops class contains 

mostly palm oil (dendê), bananas, and orange fields. Our 

approach got around 90% of accuracy when identifying this 

class among the others. This is crucial for the region, where 

palm oil is increasing in area and socio-economic importance. 

For bananas and orange fields, the spatial resolution of 20 

meters is coarse. These fields are small and a spatial 

resolution of 10 meters or higher should be used to better 

results. 

We identified areas under conversion, which means 
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that the forest (or other native vegetation) was removed in 

2019 and we did some lugging activity or soil turning. In 

Figure 3 we have some examples of this situation. This 

information is important to help understand where the is 

happening natural vegetation loss and, monitor what will 

happen in the future years in this region. 

After an inspection of the LULC classification, it 

was possible to identify that our approach overestimates the 

perennial crop areas. However, that was not shown in the 

accuracy approach due to the roadside example. Seems like 

the areas with possible forest degradation (near a conversion 

area) are being classified as perennial crops. Also, for some 

regions where the cloud cover frequency impacts the number 

of optical images, seems that our approach could 

overestimate the pasture and perennial crop classes. Although 

these points, this approach could be improved and used to 

help the public and private policies in southern Roraima. 

 

5. CONCLUSION 

 

SAR-optical data, associated with GEE and RF classifier, 

represents a possibility to get LULC information over large 

tropical areas. We demonstrate it in this approach, classifying 

the LULC for southern Roraima, in 2019. 

It achieved accuracy near 90% for almost all the 

classes. Besides, the results brought important information 

about perennial crops and conversion areas for southern 

Roraima. However, some improvements are necessary to 

improve the LULC classification quality. For future works 

we do recommend providing a classification for each 

municipality, to try performance the classification in a higher 

spatial resolution (i.e., 10 meters) and classify different years 

to analyze the LULC changes locally. 
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