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Abstract. We present preliminary results concerning a central problem in Ecology with applied implications: to 
mechanistically predict animal population abundance and distribution within a real landscape. We approach it by 
combining Resource-Area-Dependence Analysis (RADA) with individual-based modeling (IBM). Common 
buzzards Buteo buteo in lowland UK were used to exemplify it. RADA determined that a buzzard requires, on 
average, a tree for roosting, 0.56ha of rough-ground and 15ha of grassland (good habitats for small mammals). 
This information was used to define, in the IBM, virtual animals with realistic resource-related parameters and 
their values. Rules concerning maximum foraging distances and territorial behavior were then included. The 
model was run on the 1990 Land Cover Map of Great Britain. Its outputs were: at the individual-level, home-
range area, perimeter and proportion of overlap (proxy for territoriality), and, at the population-level, overall 
range, local density and carrying capacity of the landscape for buzzards. Virtual buzzards’ home-ranges and their 
pattern of overlap were indistinguishable from those of wild buzzards. When compared with two independent 
field-based estimates, predictions for carrying capacity of 211-226 individuals (100 model runs) suggested 
buzzards had recovered from previous low levels and reached equilibrium density in the area. As our approach 
relies on remote sensing for data acquisition, it allows for modeling animals roaming over areas that are huge, 
dangerous or difficult to access, and for using historical and contemporary datasets and techniques. Future 
advancements should allow for modeling of social or non-territorial species, and for considering landscape 
management scenarios in a climate change context. 
 
Palavras-chave: animal ecology, individual-based modelling, remote sensing, ecologia animal, mapeamento, 
modelagem-baseada em indivíduos, sensoriamento remoto.   
 
1. Introduction 

The natural environment from which we, as a species, have emerged, has reached such 
profound degradation levels that it has been argued that we are at the onset of a new 
geological era, the Anthropocene (Steffen et al. 2011). Among the drivers of such degradation 
are widespread extinctions of species (Ceballos et al. 2015), human cultures and languages 
(Amano et al. 2014), creation of increasingly dysfunctional ecosystems (Scheffer 2015), 
climate change (IPCC 2013), air, water and soil pollution (Rockström et al. 2009), and 
depletion of mineral resources (Prior et al. 2012). Amidst such a daunting scenario, it has 
been argued that the science of ecology could contribute to reverting the current trend by 
becoming more predictive and scenario-oriented (Grimm & Railsback 2012; Evans et al. 
2013). This, the authors argue, requires modeling that takes into account the fact that 
individuals are the elementary particles of ecological systems, and that system-level 
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properties, such as population abundance and distribution, or stability and resilience, emerge 
from interactions among individuals and between them and their environment. 

For modeling the abundance and distribution of animal populations within real 
landscapes, predictive ecology has been advancing through developments in two main fronts: 
statistical and individual-based models (IBM). Statistical models, under the general umbrella 
of ‘resource selection functions’, are based on the establishment of relationships between 
animals’ use of space and resource availability or environmental conditions (Boyce et al. 
2016). Such models have been allowing for quantitative predictions of animal abundance and 
distribution within real landscapes and have benefitted from fast improvements in the field of 
remote sensing, particularly landscape mapping and radio-tracking (Cagnacci et al. 2010; 
Pettorelli et al. 2014). Owing to their statistical nature, however, these models do not allow 
for explicit consideration of the effects of social interactions (ex. territoriality) upon 
populations and their predictions are limited to landscapes with similar structure to that based 
on which the model was parameterized (Boyce et al. 2016). 

In contrast, in individual-based models (IBM), one creates individuals by defining their 
characteristics and the rules that govern their interactions. Individual success is measured as 
the achievement of an objective; for example, to reproduce or establish a home-range. As a 
result of these interactions, the population patterns of abundance and distribution emerge. If 
model structure is based on ‘first principles’, for example, finding resources such as food or a 
mate, when projections are made within a different landscape individuals naturally organize 
themselves in a different way. This is similar to what happens with real animals in a real 
landscape. It suggests one may be able to extrapolate model projections to situations differing 
with regards to the distribution of those resources (Grimm & Railsback 2012; Evans et al. 
2013).  

However, obtaining the data for defining realistic model parameters and their values has 
proven somewhat hard so far. Reasons include the great effort involved in collecting 
systematic field data over large areas, as well as the theory being in a rather early stage of 
development when it comes to understanding individuals’ resource requirements (Boyce et al. 
2016). Owing to this, empirical information for IBMs has been based on assumptions 
(Rushton et al. 1997, 1999; Macdonald & Rushton 2003), estimations after decades of 
collecting data on small animals ranging over small areas (Goss-Custard et al. 1995a,b, 2006; 
Stillman 2008; Stillman & Goss-Custard 2010), or has come from intensive and costly on-the-
ground sampling (Marucco & McIntire 2010; Carter et al. 2015). This limits their use, 
particularly with animals with large ranges in areas that are costly or difficult to access. 
Examples could be Amazonian manatees Trichechus inunguis (Arraut et al. 2010, 2016), 
Jaguars Panthera onca (Ramalho & Magnusson 2008) or Harpy eagles Harpia harpyja in the 
Amazon (Aguiar-Silva et al. 2014), rhinoceros or elephants in Africa (Valeix et al. 2011; Cain 
et al. 2014), or bison Bison bison in North America (Plumb et al. 2009). 

Here we provide one solution to the problem of predicting animal population abundance 
and distribution within a real landscape. We present Resource-Area-Dependence Analysis 
(RADA), a statistical analysis that relies on remote sensing information (radio-tracking and 
mapping) for inferring individuals’ resource requirements. This information is then used to 
define resource-related parameters and their values in an IBM, where one then programmes 
rules to govern the interactions. To illustrate the approach, we chose a species for which a 
comprehensive dataset existed; namely, the common buzzard (Buteo buteo) in lowland UK 
(Kenward et al. 2001). Here we provide a synthesis of what we reported in (Arraut et al. 
2015) and of recent developments that shall be soon submitted as two papers (Arraut et al. in 
prep.; Kenward et al. in prep.). 
 
2. Method 
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2.1 Resource-Area-Dependence Analysis (RADA) 
Resource-Area-Dependence Analysis (RADA) involves using the relative variation in the 

size of home-range cores and of patches of each landscape class contained within them to 
discover: in which landscape class a resource occurs, how much of it an individual needs on 
average, and within which home-range core it is usually found (Kenward et al. in prep.). The 
data required are a sample of radio-tracked animals and a thematic map with at least one of its 
classes containing information regarding the accessibility of the resource to individuals. 

First, a subset of the animal population that is hypothesized to present a similar pattern of 
resource use is defined. This could be, for example, adults, adult females or juveniles. Then, 
the home-ranges of individuals in this subset are estimated and superimposed on the map. The 
areas of each map class contained within the sample of home-ranges are plotted independently 
against the size of the home-ranges within which they occur. In such plots, one expects a 
point-pattern of dispersion resembling a straight horizontal line – this would imply that each 
individual adapts the size of its home-range so as to encompass the minimum required amount 
of that particular resource. The assessment of statistical significance involves testing the 
regression log(a/A) against log(A), with A representing the area of individuals’ home-range 
cores and a the area of a particular map class contained within a home-range core. 
Significance of observed r and b values is estimated from their position in distributions of 999 
randomization values. The distribution is created by selecting home-range outlines at random 
with replacement from the sample of home-ranges and then randomly placing (rotating and 
displacing) them on the map within a single convex hull enveloping all of the tracked 
individuals’ ranges. An observed value is considered significantly different from the 
randomized values, in a two-tailed test, if it is less than 50 (for P <0.10), 25 (for P <0.05) or 5 
(for P <0.01) from the top or bottom edges of the distribution of random values, or has no 
random values beyond it (for P ≤ 0.002 from one run or P ≤0.001 in both of two runs). 
 
2.2 Empirical Individual-based model (E-IBM) 
In the E-IBM, virtual animals are defined based on empirically derived (via RADA) resource-
related parameters and values. Additional parameters and rules of interaction are then defined 
using ancillary information or based on hypotheses. Their precise values may be obtained 
from the data or determined via calibration. At this stage, one also decides which system-level 
outputs to measure (see buzzard example below). Overall, it is suggested that model building, 
from conceptualization to sensitivity and robustness analyses, follows the Pattern-Oriented 
Modeling approach (Grimm & Railsback 2012), and that its documentation follows the 
Overview, Design Concepts and Details (ODD) protocol that is used widely in the IBM 
literature (Grimm et al. 2010). 

2.3 Example: common buzzard in lowland UK 
Seventy-two common buzzards were monitored in Dorset during October 1990-94, shortly 
after their main autumn dispersal period (Walls and Kenward 1995). From these, 114 seasonal 
home-ranges were estimated using standard samples of 30 locations (Kenward 2001). 
Mapping data came from the 25x25-m resolution Land Cover Map of Great Britain 
(LCMGB), which was developed by supervised likelihood classifications of combined winter 
and summer Landsat Thematic Mapper scenes imaged in November 1989 and July 1990 
(Fuller et al. 1994a,b). 
Establishing a territory meant finding the required areas of each resource-containing map 
class within the maximum travel distances from the site where the virtual buzzard initially 
settled (this was a pixel of the woodland map class chosen randomly). If the required 
resources were not accessible from the settling site, the individual would mark that site as 
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‘used’ (so that other individuals would not try settling on it) and then emigrate/die (no 
distinction). A model run would end when there were no potential settling sites left.  

Model outputs were the size and perimeter of buzzard home-ranges, as estimated with 
Minimum Convex Polygons (MCP) from 25%-100% at 5% intervals, the proportion of each 
individual’s 85% MCP contours that overlapped with at least one other adult non-sibling, total 
population range, population density locally (within 2x3km quadrants) and carrying capacity 
of the landscape for buzzards. The choice of 85% MCP for the overlap output was based on 
results obtained for the territorial pattern of wild buzzards (Walls & Kenward 2001). Outputs 
were computed per run and results were based on 100 runs. 

3. Results and Discussion 
When applied to the common buzzard case, RADA showed that on average each wild 

individual needed 0.54ha (0.35-0.82ha) within its inner home-range core, 15ha of meadow 
within its outermost core, and a tree for roosting. To illustrate actual RADA outputs, Table 1 
shows results for the analysis involving meadow. Correlations obtained using independent 
home-range estimation algorithms consistently pointed towards the need for meadow within 
the outermost cores, suggesting results were biologically meaningful, as opposed to 
algorithm-dependent. In addition, values for r ranging from -0.17 to -0.20 for the most 
significant results suggest there exists variation in meadow patch quality or in individuals’ 
resource requirements. The explanation might be that buzzards are better at killing rabbits 
(Oryctolagus cuniculus), an important prey (Hodder 2000), when these are roaming over 
larger grassland areas; in small patches rabbits have better chance of escaping into the 
undergrowth of adjacent tree- or bush-dominated patches. Considering the 99% Kernel 
results, mean minimum meadow requirements per buzzard was 15ha (details of this 
calculation are reported in (Arraut et al. in prep.; Arraut et al. 2015)). 

Following the methodology explained above, initial parameters in the IBM were: 
‘roosting site’ = 0.0625ha of woodland (= 1 pixel), ‘area of required rough-ground’ = 0.56ha, 
and ‘area of required meadow’ = 15ha. We then calibrated maximum travel distances for 
finding rough-ground or meadow by comparison with radio-tracking data on wild animals. 
Calibrated values were: 150m for rough-ground and 1200m for meadow. 

 
Tabela 1. Matrix of correlation coefficients for proportion of meadow for 114 common 
buzzards in southern England. Significance levels, by randomization, are P ≤ 0.05 (pale gray), 
P ≤ 0.01 (dark gray) and P ≤ 0.002 (black). Abbreviations for home-range estimation methods 
correspond to: Ellipse = Jennrich-Turner Ellipse, Kernel = Kernel Density Estimator, MCP = 
Minimum Convex Polygon, HM = Harmonic mean. 
 
Estimator Percentage.inclusion.of.density.distribibution.or.locations

30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 99%/100%
Ellipse 0.01 30.01 30.02 30.02 30.02 30.03 30.04 30.05 30.05 30.08 30.10 30.12 30.15 30.16 50.18
Kernel 30.11 30.09 30.10 30.11 30.14 30.10 30.14 30.15 30.15 30.16 30.17 30.17 50.17 50.18 50.20
MCP 30.05 30.09 30.01 30.05 30.06 30.03 30.02 30.04 30.06 30.05 30.05 0.00 30.08 30.09 30.14
HM 30.05 30.05 30.08 30.13 30.13 30.14 30.14 30.13 30.12 30.12 30.11 30.10 30.70 30.80 30.11  
 
A comparison of the percentage overlap of the predicted population range on the range of the 
sampled buzzards yielded 97.2% coincidence, indicating the model’s omission error was low 
(red areas in Figure 1). Though commission error is difficult to determine objectively in this 
case, it was noticed that the two areas where buzzards were predicted to occur, but had not 
been tracked, were in areas where sampling had been unsystematic or absent: the one to the 
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southwest lies within a restricted-access military range whereas the one to the east is a large 
bog with no road access. 
 

 
Figure 1 – Predictions for buzzard population at carrying capacity: (a) 85% MCP home-
ranges (N=223), (b) spatial distribution (purple polygons) superimposed on areas occupied by 
wild buzzards (black polygons). 
 
The model predicted that the carrying capacity of the study region for buzzards would be 
reached at 211-226 individuals (Table 2). This range fell well within the ranges obtained by 
two independent field-based estimates from the mid 1990s (Table 2). This suggests that after 
undergoing a dramatic population collapse in the 1950s, owing to a decline in the rabbit 
population following the introduction of the myxoma virus by UK authorities, by the mid 
1990s buzzards in the study area had recovered to their equilibrium density. 
 
Table 2 – Comparisons between Buzzard-IBM calculations for abundance at carrying capacity 
after 100 model runs and independent estimates from Transect and Mark-Resighting (M-R) 
surveys made between 1990 and 1998 (Kenward et al. 2000). 
 
 M1 Transect M-R 
Abundance 219 256 250 

95% CI 218-219 152-435 82-417 

Variation 211-226 - - 
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To our knowledge, the Buzzard IBM presented here is the first to mechanistically predict the 
carrying capacity of a real landscape for a real animal population. This kind of modeling may 
allow for assessing the status of populations within conservation areas or multi-functional 
landscapes. Comparison of model predictions with data on wild animals could clarify, for 
example, whether a population is at or below carrying capacity. This might be particularly 
relevant for vulnerable or endangered species, for which the maximization of abundance 
within available refuges is often desirable. Moreover, we suspect that the overcoming of some 
challenges concerning the structure of the model presented here will facilitate the creation of 
models for other species that, like buzzards, are solitary and territorial. This could be the case 
with, for example, Amazonian manatees, Harpy eagles or jaguars. Expanding the potential use 
of this approach will require, among other things, understanding the effect on RADA results 
of variation in patch quality, as well as developing the basic model structure for animals that 
use space in ways that are more complicated than buzzards. African lions Panthera leo, which 
are social and territorial (Packer et al. 2005), and several species of large herbivores, which 
are social but non-territorial, are but a few examples. 
Yet another potential use of this modeling approach concerns scenario-oriented landscape 
management. As virtual individuals adapt their use of space to the local distribution of 
resources, predictions for landscapes with similar composition but different structure should, 
in principle, be valid. Such landscapes could reflect, for example, alternative management 
scenarios that take into account agricultural production and climate change. This would allow 
policy to be better tailored to particular conservation outcomes, analogously to what has been 
happening in the scenario-driven climate change arena (IPCC 2013). The development this 
approach to the point where it can be reliably used in scenario-oriented modeling is an on-
going research. 
 
4. Conclusions 
Our results illustrate the potential of the RADA-IBM approach for modeling the abundance 
and distribution of a real animal within a real landscape. The use of remote sensing for 
deriving the empirical data indicates its applicability to animals that roam over areas that are 
large, dangerous or difficult to access from the ground. It also suggests that developments in 
our modeling approach will be closely linked to progresses in the field of remote sensing. 
This is an on-going research and further steps will aim at making it applicable to social or 
non-territorial species, as well as in scenario-oriented landscape management. 
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