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Abstract. This paper investigates the fusion of several kinds of SAR (Synthetic Aperture Radar) images
with optical images, which were used as inputs for land cover classification. Once the images are
from different sources, it must be corrected and referenced one over the other. The technique applied
to perform the fusion was the classical IHS (Intensity-Hue-Saturation), where the I component was
replaced by a product of polarimetric SAR images, that include: HH and HV polarization amplitude
SAR image, the ratio of HV to HH amplitudes, the bands ratio and the Freeman-Durden Decomposition
components. After fusing, all real images were classified by region growing method using the
Bhattacharya distance. The complex image, i. e., SAR images, were classified by the same method,
but using the Wishart distribution and the Bhattacharya distance. The classification accuracy of each
method was measured by the Kappa coefficient.
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1. Introduction
With the availability of multi-source, multi-temporal, multi-resolution and multi-frequency

image data from operational Earth observation satellites, the fusion of digital image data has
become a valuable tool in the remote sensing image evaluation (POHL; GENDEREN, 1998).

The sensors used in the image acquisition process can be grouped according to the range
of the electromagnetic spectrum in which they operate (BRAGA; SANT’ANNA; FREITAS, 2015).
The optical sensors operate in the range of 0,3 to 1,5µm, and the SAR sensor, in the microwave
range - usually between Ka-band(1.5 cm) and P-band (100 cm).

Multi-sensor or multi-source image processing is a method for alignment of images acquired
by sensors of different modalities (IRANI; ANANDAN, 1998).

Many studies that combine SAR and optical images have been published as Braga,
Sant’Anna e Freitas (2015), Riedel, Thiel e Schmullius (2007), Pereira (2012). However, most
of them concern in the use of amplitude SAR image and SAR parameters as the ratio of VV to
HH backscatter, the ratio of HV to HH backscatter, the phase difference between HH and VV,
and the correlation between HH and VV. In this work we propose the use of the information
extracted from the Freeman–Durden decomposition as an additional information plan to be used
in the IHS fusion and the Cloude–Pottier decomposition, to determine the classes.

2. SAR Images
The radar images are formed by radar echoes of various combinations of transmitting and

receiving polarizations from scattering media (LEE; POTTIER, 2009). And the SAR images are
obtained from satellites such as ERS, JERS, ALOS, RADASAT.

The main difference between optical and microwave images is the way each one interacts
with the targets: while in the optical case the images are formed by incoherent interaction,
SAR images are formed by coherent interaction, that means the information of phase is very
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important. Due to the coherent interference of waves reflected from many elementary scatterers,
the speckle appears in this images.

The speckle effect causes the granular noise pattern, and therefore, a pixel-to-pixel variation
in the intensities (LEE; POTTIER, 2009). This effect turns the image analysis harder and
reduces the effectiveness of the image segmentation and classification. According to Lee e
Pottier (2009), a common approach to speckle reduction is done by filtering or by multi-look
processing. In this paper, a boxcar filter to speckle noise reducing is applied.

3. Images Attributes
3.1. Optical Attributes

A large number of attributes can be extracted from optical images. Despite this, only the
combination of gray levels taken from three bands of the Landsat-5 satellite (2,4,5) was used as
input of a classification scenario.

3.2. SAR Polarimetric Attributes
The PALSAR full polarimetric sensors are able to transmit and receive both the orthogonal

components (H and V). Therefore, phase difference, amplitude product and amplitude ratio
between two or more polarizations attributes can be created.

These attributes are important discriminators for terrain classification and geophysical
parameter estimation (LEE; POTTIER, 2009). Pereira (2012) introduces different ways to extract
attributes from polarimetric images and shows why they should be used. Based on that, two
kinds of attributes are chosen: band ratios and Principal Components.

3.3. Bands Ratios
In this paper, two kinds of bands ratios were used: HV/HH and NL. The first one highlights

the features which elements are predominantly in the vertical direction, which vegetation types
can be distinguished, and has a high sensibility for volumetric scattering. The second ratio is
computed as shown below:

NL =
HH ×HV
HH +HV

(1)

This ratio allows the use of the combined information taken from bands HH and HV, when
applying the fusion process of optical and SAR images.

3.4. Principal Components
The PC (Principal Components) extraction applied on an original set of bands aims the

creation of new, linearly uncorrelated, bands. In this work, the first component is used as a
classification attribute. When using only the first component, the dimensionality of the data is
reduced. The PC are extracted using as input the covariance matrices.

The PCA (Principal Components Analysis) follows the method proposed onto (RICHARDS,
1999), and was applied to the Amplitude HH and HV components.

3.5. SAR Decompositions
The purpose of a decomposition in radar polarimetry is to provide means for interpretation

and optimum utilization of polarimetric scattering. Here, the Incoherent Target Decomposition
were used because most of the targets in the environment are incoherent and have random
scattering, therefore they are studied in the statistical perspective, using as base the covariance
matrix [C] and the coherency matrix [T ].
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The two method of incoherent target decomposition used were: the Freeman-Durden and
the Cloude-Pottier decomposition.

3.5.1. Cloude-Pottier

The Cloude-Pottier decomposition consists in the evaluation of the eigenvalues and the
eigenvector taken from the matrix [T ] and through it, determine the polarimetric SAR
parameters such as Entropy (H), Alpha Angle (α) and the Anisotropy (CLOUDE; POTTIER, 1997),
expressed by the Equation 2.

H =
3∑
i=1

(−Pilog3Pi), α =
3∑
i=1

(Picos
−1(kxi)), A =

λ2 − λ3
λ2 + λ3

(2)

where λi are the eigenvalues of [T ], kxi is first element of eigenvector associated to λi and
Pi =

λi
λ1+λ2+λ3

.
The alpha parameter has a range from 0 to 90 degrees and it is an average representation of

the eigenvector information while the entropy lies between 0 and 1 and represents the eigenvalue
information. The anisotropy also lies between 0 and 1 and has suggested as a new feature
to distinguish depolarizing mechanisms in surface and volume scattering (CLOUDE; POTTIER;
BOERNER, 2002).

The classes used for the classification process was determined by the Cloude-Pottier
decomposition.

3.5.2. Freeman-Durden

The Freeman-Durden decomposition is a technique based on physical models, which goal is
estimated the contribution of canonical components to the total backscatter of SAR images,
without utilizing any ground truth measurements.

The three scattering mechanism components included in the model are canopy scatter from
randomly oriented dipoles (volumetric), first-order Bragg surface scattering, and a double-
bounce scattering mechanism (FREEMAN; DURDEN, 1998). According to Freeman e Durden
(1998), the total backscatter can be expressed as the sum of the statistics for the individual
mechanisms (Equation 3 ).

P = Ps + Pd + Pv (3)

were Ps, Pd and Pv are the surface, double-bounce, and volume (or canopy) scatter
contributions.

4. Methodology
This section contains a description of the work methodology, including the pre-processing

steps, the applied fusion method, and the classification methods and scenarios.

4.1. Image pre-processing
Image pre-processing can significantly increase the reliability of a classification. Several

operations which intensify or reduce certain image details enable a better evaluation.
When combining and fusing any kind of images (in this case, optical and radar ones), it is

assumed that they have the same projection and the same geographic coordinates system. The
register between them is also very important (if possible, with sub-pixel precision).
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Due to the format of the acquired ALOS/PALSAR images, some extra steps are necessary
(Figure 1). After that, the images are registered, trying to acquire sub-pixel precision. So the
images are prepared for the main processing steps.

Figure 1: Pre-processing steps.

4.2. The IHS transformation
The IHS transformation is related to the perception of the human being about colors. Here,

"I" refers to the intensity or brightness, "H" is the hue and "S" saturation (how the color is pure).
The fusion of optical and SAR data is done by choosing three optical bands, selected

according the study/work objective and transforming them from the RGB space to the IHS
space. At this space, the color and intensity are separated.

The intensity, related to the surface roughness, is changed by the SAR selected image, and
the back to the RGB space is performed. The conversion is presented in Equation (4).RG

B

 τ→

 IH
S

 ζ→

SARH
S

 τ−1

→

Rnew

Gnew

Bnew

 (4)

4.3. Scenarios
From the selected attributes presented previously, eight scenarios were created. The Table

1 shows its characteristics. The combinations between SAR and optical images were made by
using the IHS transformation, which the "I" component was changed by the SAR attribute or its
decomposition.

Table 1: Scenarios list.

Acronym Characteristic
RGB normal composition with R(5), G(4) and B(2)

FullPol covariance matrix taken from full polarimetric data
RGB + PC1 RGB and SAR First PC
RGB + DIV RGB and SAR DIV
RGB + NL RGB and SAR NL

RGB + SUP RGB and Freeman-Durden Superficial decomposition
RGB + VOL RGB and Freeman-Durden Volumetric decomposition
RGB + DB RGB and Freeman-Durden Double-Bounce decomposition
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5. Classification
5.1. Selected Classes

An unsupervised classification scheme for polarimetric image SAR based on the use of the
H−α plane, proposed by Cloude and Pottier was applied to discover and select the classes used
as input to classification analysis. This plan is subdivided into eight basic zones characteristic
of classes of different scattering behavior. For this analysis, the central pixel for each zone was
taken from the zone in the plane, as shown in Figure 2a.

(a) (b)

Figure 2: a) Classes samples in the Cloude-Pottier plan. b) Classes samples over the LANDSAT
image. FP(Native Forest), FR(Reforestation), PA(Pasture), SF(Bare Soil), SF2(Bare Soil 2).

5.2. Method
After the class definition, acquisition and testing samples were extracted from the image

(Figure 2b). Both kinds of images (real and complex) were classified by region growing method
using the Bhattacharya distance. The difference is in the distribution used in data modeling: The
real images were modeled by the Gaussian distribution, and the complex one, by the Wishart.
The classification was performed for all the scenarios. After that, the global Kappa coefficients
were computed, and the results are presented in the next section.

The processing related to SAR image, as decompositions and Wishart classification, as well
as the confusion matrix and kappa coefficient were implemented in C++, using the TerraLib
library, and in IDL language. The other process were done in Spring software, both created and
supported by DPI/INPE (Image Processing Division - Brazilian Institute for Space Research).

6. Results
The next figures present the result of the classification for all scenarios. The red circles

indicate areas which classifier was unable to classify. The data produced by (BRAGA;
SANT’ANNA; FREITAS, 2015) is used as ground truth, due to the in-situ validation, performed by
its working team. Using this data, the Kappa’s coefficient was computed for each classification
result.

The classification of FullPol scenario could not separate the Native Forest and Reforestation
classes correctly, and could not classify the second type of bare soil. Its Kappa was the worst
one.

As Figure 3b shows, despite having the highest kappa’s value, the result of the optical image
classification has lot of area without classification.
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The classification from the RGB+PC1 scenario (Figure 3c) still have some non-classified
areas (less than the RGB ones) and has the bigger kappa’s coefficient result. When visually
compared to the input image (visual interpretation), it seems a good result.

The result of RGB+DIV and RGB+NL scenarios (Figures 3d and 3e) have good kappa
values and good behavior when classifying the forest classes. Both scenarios presented
confusion when classifying bare soil and pasture.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Classification of: a) Polarimetric SAR image. b) RGB image, only optics images.
c) RGB and SAR First PC. d)RGB and SAR DIV. e)RGB and SAR NL. f)RGB and Freeman-
Durden Superficial decomposition. g) RGB and Freeman-Durden Volumetric decomposition.
h)RGB and Freeman-Durden Double-Bounce decomposition.

As expected, the RGB+SUP scenario, instead of a non-high kappa value, produced a good
result when identifying the two kinds of bare soil.

The RGB+VOL scenario has a low Kappa’s value, and its result is expected, due to some
specific characteristics (presented in the following section).

The worst Kappa value of the real images was produced by the RGB+DB scenario. Apart
from this result, it produced better classification for Reforestation when compared to RGB-
VOL.

7. Conclusion
From the analysis presented above, we can conclude that the multi-source image

classification, including decomposed data, is practicable. Instead of low kappa values, the
components can be applied to the specific target classification.

The low Kappa and classification quality problems, presented by the FullPol images, can
be explained by the high interval between the dates of the image acquisition and the in-situ
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Table 2: Kappa coefficient result.

Image Kappa Variance z
RGB 0.9811 0.0001 86.1711

FullPol 0.2590 0.0001 28.9341
RGB + PC1 0.9977 0.0001 93.7007
RGB + DIV 0.8226 0.0001 72.0016
RGB + NL 0.9127 0.0001 84.1898

RGB + SUP 0.7840 0.0001 70.0340
RGB + VOL 0.5000 0.0002 37.1231
RGB + DB 0.4858 0.0001 40.5150

validation. For better results, a new image should be acquired.
The confusion between the two kinds of forest, presented in the RGB+VOL scenario, is

expected because the scattering behavior is almost the same for both cases. The confusion
between pasture and forest is due to the "size of the pasture elements": depending on its size,
it results in a Volumetric behavior, causing the confusion. And the data taken from the L-band
(ALOS/PALSAR data) can present behavior as presented before.

The RGB+DB scenario, apart from its result, it produced better classification for
Reforestation when compared to RGB-VOL. It happens because there are more tree trunks
in this type of area, producing the double-bounce behavior.

As presented in this paper, different kinds of data fusioning and combination can be used
for classification, but for specific cases, and for specific areas. Depending on the aim of
classification, some combinations can present better results when compared to others.
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