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ABSTRACT 

 

Active Light Detection And Ranging (LiDAR) and passive 

Hyperspectral Imaging (HSI) remote sensing provide 

complementary information that can be combined to 

improve the estimation of vegetation properties, such as 

aboveground biomass (AGB). Thus, the main objective of 

this study is to evaluate the combined use of LiDAR and 

HSI data for estimating AGB in the Brazilian Amazon, by 

using six regression methods, a high range of remote 

sensing metrics, and feature selection. To assess the 

prediction ability of the remote sensing data, single and 

combined LiDAR and HSI metrics were regressed against 

AGB from 147 sample plots across the Brazilian Amazon 

Biome. Overall, the results showed a similar model 

performance for both LiDAR and HSI single datasets, and 

for the regression methods used. However, the combination 

of LiDAR and HSI data improved the AGB estimation 

accuracy. 

 

Key words - imaging spectrometry, laser scanning, 

machine learning, biomass, tropical forest. 

 

1. INTRODUCTION 

 

Aboveground biomass (AGB) is a key component of the 

global carbon cycle. Given its importance, there is a 

growing interest in improving estimates of AGB, allowing 

accurate monitoring at the landscape scale. Tropical 

ecosystems, in particular the Amazon forest, have been 

receiving particular attention because of their critical but 

still highly uncertain carbon balance [1]. 

Remote sensing has been used to estimate AGB with 

different sensors by establishing relationships between field 

data and optical metrics [2]. Light Detection And Ranging 

(LiDAR) is promising to characterize complex forest 

structure because it is less sensitive to signal saturation than 

passive optical sensors [3]. In contrast, LiDAR has restricted 

spectral resolution [2], generally covering a single spectral 

range in the near infrared. 

In contrast with LiDAR, hyperspectral imaging (HSI) 

acquires data in narrow and continuous bands, and thus 

enables detection of absorption features that are useful for 

distinguishing different vegetation types and tree species. In 

addition, hyperspectral instruments provide information on 

plant stress and biochemical properties [4]. However, their 

ability to detect vertical structure is limited since the 

reflectance comes mostly from the upper canopy [5]. 

Combining structural information provided by LiDAR 

and spectral information provided by HSI can improve the 

accuracy of AGB models [3]. Several studies have 

investigated the potential of combining LiDAR and HSI 

data for classifying land cover types or tree species [e.g. 6, 

7]. However, only a few studies were conducted aiming 

AGB estimates [e.g. 5, 8, 9, 10]. From these, only Clark et 

al. [9] and Vaglio Laurin et al. [10] carried out studies in 

tropical areas from Costa Rica and Sierra Leone, 

respectively. 

Several factors influence the prediction accuracy of 

remote sensing based AGB models. Examples include the 

number and type of metrics calculated from remote sensing 

data and the regression methods. Most of the AGB modeling 

studies use linear regression statistical models. However, the 

complex relationship between biomass and remote sensing 

metrics, sometimes non-linear and other times linear, can be 

better addressed by non-parametric methods [5]. These 

models include machine learning techniques such as 

Support Vector Regression (SVR), Gradient Boosting 

Machine (GBM), and Random Forest (RF). 

This study aims to evaluate the combined use of LiDAR 

and HSI for estimating AGB in the Brazilian Amazon, by 

using different regression methods and distinct remote 

sensing metrics submitted to feature selection procedures. 

 

2. MATERIAL AND METHODS 

 

2.1. Study areas and field data 

 

This study used a dataset from 13 sites in the Brazilian 

Amazon, distributed along the states of Amazonas, Pará, 
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Rondônia and Mato Grosso. The sites, composed of primary 

forests and secondary successions, span different climate 

conditions, soil types, forest structures, species 

compositions, and land use histories. Each site has been 

surveyed with forest inventories, airborne LiDAR and HSI. 

The field data comprised of a total of 147 plots, of which 

124 plots have approximately 0.25 ha and 23 plots have 0.16 

ha. Forest inventory data were collected between 2011 and 

2017. The AGB for each living tree with DBH (diameter at 

breast height) ≥ 10 cm was estimated using the pantropical 

allometric equation of Chave et al. [11] (equation 4). We 

also took into account the uncertainties of measurements 

and allometric equation by propagating their errors in a 

Monte Carlo approach (see details in [12]). 

 

2.2. Remote sensing data 

 

Both LiDAR and HSI data are transects of approximately 

300 m x 12.5 km, collected as part of the EBA project 

(Estimativa de Biomassa na Amazônia, 

http://www.ccst.inpe.br/projetos/eba-estimativa-de-

biomassa-na-amazonia/). LiDAR data were collected 

between January 2016 and April 2017 using the same 

airborne discrete-return system (HARRIER 68i Trimble
©
). 

The LiDAR sensor recorded multiple returns with a 

minimum point density of 4 returns m
-2

, small footprint and 

a scan angle of 45º. Horizontal accuracy varied among sites 

from 0.035 m to 0.185 m. Vertical accuracy ranged from 

0.07 m to 0.33 m. Firstly, each point cloud was preprocessed 

by identifying and removing isolated noisy points with the 

lasnoise function (LAStools software [13]). Then, ground 

points were filtered and interpolated into a 1-m digital 

terrain model (DTM), using the FUSION/LDV software 

[14]. To obtain the height above ground for each point, the 

DTM was subtracted from point elevations. After that, the 

normalized point clouds were clipped according to each plot 

spatial extent to further calculate the LiDAR-derived 

metrics. These metrics included height statistics (maximum, 

mean, standard deviation, percentiles, coefficient of 

variation, skewness, and kurtosis), proportion of first 

returns, point density and leaf area density [15] at different 

height intervals, structural complexity (Shannon and 

Simpson indices), and topography (mean DTM elevation). 

LiDAR metrics (except topography) were calculated using 

just the first returns, above a 2 m height threshold, to 

remove near ground points. 

Airborne HSI data were collected between September 

and October 2017, using the AISAFenix sensor (Spectral 

Imaging
©
) at an average altitude of 800 m. The sensor 

acquired images in 361 bands positioned between 380 and 

2500 nm. Bandwidth ranged from 5.7 nm to 6.8 nm. The 

spatial resolution was 1 m. The radiance images were 

converted into atmospherically corrected surface reflectance 

data using the Atmospheric/Topographic Correction for 

Airborne Imagery (ATCOR-4 version 6.3). Data provided 

by a GPS onboard the aircraft were used for geometric 

correction. Noisy bands around the two major spectral 

intervals of water vapor absorption (1400 and 1900 nm) 

were removed from the analysis. From the 361 bands, 230 

bands were left for subsequent statistical analysis. 

HSI metrics included the original reflectance bands, 38 

vegetation indices, continuum-removal absorption features 

(band depth, width, area, and asymmetry) centered at five 

wavelengths (487, 667, 980, 1200, and 2100 nm), and 

endmember fractions (green vegetation, shade, and non-

photosynthetic vegetation/soil) obtained from linear Spectral 

Mixture Analysis (SMA). All metrics were firstly obtained 

on a pixel-basis and then converted to the plot-level by 

calculating the average of all pixels values within the field 

plot. We also calculated the proportion of pixels with a 

certain SMA-derived shade fraction (<30%, 30-60%, and 

>60%) as potential metrics related to canopy structure.  

To avoid redundancy, we removed highly correlated 

metrics (absolute Pearson’s correlation ≥ 0.98), and also 

linear combinations, using the R package caret [16]. After 

this procedure, the number of metrics for modeling was 

reduced from 45 to 34 for LiDAR and from 296 to 64 for 

HSI. 

 

2.3. Modeling framework 

 

We tested three predictor datasets for AGB modeling: 34 

LiDAR metrics, 64 HSI metrics, and their combination (98 

predictors). Six regression algorithms were used, including a 

parametric model, a Linear Model with elasticnet 

Regularization (LMR); and five non-parametric machine 

learning approaches: SVR with linear kernel (SVRlinear), 

polynomial kernel (SVRpoly), and radial basis kernel 

(SVRradial), GBM, and RF. The six techniques were applied 

to the three datasets using the rfe function (caret package), 

which combines feature selection, parameter tuning, and 

cross-validation. 

To evaluate models performance, a 5-fold cross-

validation, repeated 10 times (total of 50 resamples), was 

used to quantify the Root Mean Squared Error (RMSE), the 

relative RMSE, and the coefficient of determination (R
2
). 

For each training set, the models were trained using all 

predictors. We estimated the model performance on the k-

fold test sets and we ranked the predictors according to an 

importance criterion [16]. Model parameters were optimized 

by using a 4-fold cross-validation inside the training set and 

selecting the parameters with lowest RMSE. Less important 

features were sequentially removed from the models, until 

only the most important variable remained. An average 

cross-validation test error (of the 50 resamples) for each 

feature subset size was obtained. The optimal subset size 

selected was the one with the lowest number of predictors 

and with a low RMSE (whose difference did not exceed 

2.5% of the lowest RMSE). This approach selects a simpler 

model without sacrificing too much performance, by 

considering a tolerance in the RMSE value. The resulting 18 

models (6 regression techniques x 3 data sources) with 
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reduced feature size were compared based on the 

distribution of cross-validated RMSE, RMSE% and R
2
.  

Furthermore, a robust one-way ANOVA (function 

t1way of the R package WRS2 [17]) for trimmed means of 

RMSE and R
2
, followed by its corresponding post hoc test 

(function lincon), was applied in order to determine 

significant differences between models at a significance 

level of 5%. This statistical analysis does not require 

homoscedasticity, being more robust than the classical 

ANOVA.  

 

3. RESULTS AND DISCUSSION 

 

Field plots covered a broad range of AGB, from 0 Mg ha
-1

 

(no living tree with a DBH ≥ 10 cm) to 542.9 Mg ha
-1

, with 

a mean value of 193.3 Mg ha
-1

. The AGB uncertainty 

reached a maximum of 65 Mg ha
-1

, with a mean value of 

20.9 Mg ha
-1

 (11% of the AGB mean). This uncertainty is 

consistent with that reported by Chave et al. [18]. 

Considering the optimal feature size selected for each 

model, we compared the different models to assess the 

effect of the data source and regression methods on the 

AGB estimation performance (Table 1). The AGB models 

based on LiDAR data showed mean RMSE around 68 Mg 

ha
-1

 (RMSE% of 35%) and mean R
2
 around 0.67, with no 

significant difference between the regression methods used. 

Models based on HSI data performed equally well (no 

significant difference from LiDAR-models), with the 

exception of the GBM method, which presented lower 

performance (RMSE of 71.52 Mg ha
-1

, RMSE% of 37%, 

and R
2
 of 0.63) than the GBM model with LiDAR data 

(RMSE of 67.38 Mg ha
-1

, RMSE% of 35%, and R
2
 of 0.68). 

The combination of LiDAR and HSI data produced 

better model performances (RMSE decrease of 7-14 Mg ha
-

1
, relative RMSE decrease of 4-7%, and R

2
 increase of 6-

14%) than the use of only one data source (solely LiDAR or 

HSI), for all regression methods tested. The RMSE and R
2
 

of the models using combined datasets performed 

consistently better when compared to models using LiDAR-

only or HSI-only datasets (p-value < 0.05). No statistically 

significant difference was observed between the different 

regression methods with combined data sources, meaning 

that any tested method used with the combination of LiDAR 

and HSI data yielded good results. 

Previous studies [5, 9] have found lower prediction 

ability of the HSI-derived AGB models when compared to 

the LiDAR-derived estimates, and thus the combined 

LiDAR-HSI AGB models showed slight or no 

improvements in comparison with LiDAR models. Here, 

most of the regression techniques showed similar 

performances when using LiDAR or HSI data, and a 

significant improvement was observed when using the 

combined dataset. The broader range of HSI metrics used in 

this study, in addition to the selection of better features, 

contributed to the good performance of the HSI and 

combined models, by exploring the synergy between 

different vegetation properties (such as canopy structure, 

water content, leaf biochemical, and plant stress). 

Hyperspectral data have a large amount of information for 

AGB modeling, but its potential may be underestimated if 

only few metrics are considered in the analysis, which was 

not the case here. 

 
Table 1. Mean cross-validated RMSE, RMSE%, and R2 for 

each of the six regression methods and three data sources.  

 
Different letters mean significant difference (p-value < 0.05) 

between trimmed [A] RMSE mean or [B] R2 mean. 

 

4. CONCLUSIONS 

 

By optimizing the number of predictors and the model 

parameters, we found that different regression methods 

could perform equally well in estimating AGB. Therefore, 

the prediction method generally did not have a significant 

effect on the model’s performance. Results showed that the 

performance of the AGB models was improved when 

LiDAR and HSI data were combined into the data analysis, 

in relation to the use of only one type of data (LiDAR or 

HSI). The gain of information observed in the analysis 

indicated the importance of the synergistic use of both data 

sources for the AGB estimation in the Brazilian Amazon. 
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Method Data

[Mg ha
-1

] [%] [A] [B]

LiDAR 68.84 35.62 ab 0.66 ab

HSI 70.66 36.55 ab 0.64 ab

LiDAR + HSI 60.59 31.35 c 0.74 c

LiDAR 68.93 35.66 ab 0.66 ab

HSI 67.90 35.13 a 0.67 a

LiDAR + HSI 57.62 29.81 c 0.77 c

LiDAR 67.81 35.08 a 0.67 a

HSI 68.73 35.56 ab 0.66 ab

LiDAR + HSI 58.40 30.21 c 0.76 c

LiDAR 67.12 34.72 a 0.68 a

HSI 68.93 35.66 ab 0.66 ab

LiDAR + HSI 58.62 30.32 c 0.75 c

LiDAR 67.38 34.86 a 0.68 a

HSI 71.53 37.00 b 0.63 b

LiDAR + HSI 59.39 30.72 c 0.75 c

LiDAR 67.86 35.11 a 0.67 ab

HSI 69.26 35.83 ab 0.65 ab

LiDAR + HSI 58.43 30.23 c 0.76 c

Mean RMSE Mean R
2

LMR

SVRlinear

SVRpoly

SVRradial

GBM

RF
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