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ABSTRACT

Deforestation is one of the main causes of biodiversity
reduction, climate change among others destructive
phenomena. Thus, early detection of deforestation processes
is of paramount importance in the recent year. Motivated
by this scenario the present work focuses on assessing
a DL approach called Early Fusion (EF) for automatic
deforestation detection. Change detection approaches based
on Random Forest (RF) and Change Vector Analysis (CVA)
were adopted as baselines for comparison purposes. These
approaches were evaluated in a region located in the state
of Pará, Brazil, where two images from Landsat 8 satellite
were acquired to detect deforested areas from 2016 to
2017. Their corresponding references were collected from
the Satellite Deforestation Monitoring Project in the Legal
Amazon (PRODES). In the experiments, the EF approach
outperformed RF and CVA baselines, identifying in a better
way the regions that have suffered deforestation.
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1. INTRODUCTION

The Brazilian Amazon encompasses heterogeneous
ecological and socioeconomic systems, which provide
important environmental services not only to Brazil, but to
the whole world [1]. Therefore, its preservation is essential
due to a number of factors including the global ecological
balance and climate change mitigation [2]. For decades, this
system has been damaged by human activities, such as the
legal and illegal felling of trees, extension of agricultural
lands, construction of infrastructures and illegal mining.

In this context, the National Institute for Space Research
(INPE), with the development of the Satellite Deforestation
Monitoring Project in the Legal Amazon (PRODES) [3],
supervises the deforestation in the Brazilian Legal Amazon
(BLA) since 1988. Their objective is to quantify the
deforestation of areas with native vegetation and, thus,
to subsidize public policies to control and combat illegal
deforestation. However, the adopted methodology involves a
lot of manual operations. In this sense, an automatic detection
could improve or at least alleviate the human hard working
process.

Traditionally, change detection techniques based on image
algebra, such as image differencing and Change Vector
Analysis (CVA) [4], have been widely used to detect
changes in multi-temporal images. Although not requiring
prior information about the scene, they strongly depend
on thresholds to define what is considered a change. In

particular, CVA focuses on the analysis of differences to
determine the changes in terms of strength and direction [5].

Recently, Deep Learning (DL) techniques have been
successfully applied to Remote Sensing (RS) image analysis.
Through the usage of Deep Neural Networks (DNNs), it
is possible to learn multiple levels of data representation,
which usually correspond to more informative features. In
this respect, DNNs variants, such as Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN) are
potential candidates for automatic deforestation detection.
Recently, Lyu et al. [4] proposed an end-to-end RNN to solve
a multispectral image change detection problem, achieving
encouraging results. Daudt et al. [6] successfully applied a
CNN model to urban change detection based on an Early
Fusion (EF) approach, which concatenates an image pair
from different dates to build the input image for subsequent
analysis.

The main objective of this paper is to adapt and to evaluate
the aforementioned EF method for deforestation detection
in Amazon region. Our study area is a region of BLA,
located in the State of Pará, Brazil, where changes have been
mapped from 2016 to 2017. For comparison purposes we
take as baseline a Random Forest (RF) classifier and the CVA
approach .

The remainder of this paper is organized as follows:
Section 2 presents the change detection methods considered
in this work. Section 3 describes the dataset and the
experimental protocol. Results are presented in Section 4 and
some concluding remarks pointing to future works are added
in Section 5.

2. CHANGE DETECTION METHODS

2.1. Early Fusion CNN Stack (EF-stack)

CNN is a neural network, which involves a series of
convolutional operations. Those operations use multiple
kernel matrices to extract high-level features, which exploit
spatial context among pixels. CNNs contain two basic
operations: convolution and pooling, which are embedded in
the sequential layers of the network [7]. Commonly, fully
connected (FC) layers are added before the final classification
is performed. For a deeper comprehension of CNNs, we refer
to [8].

In this work, the CNN architecture model is inspired by [6],
which achieved good results for urban changing detection. In
this method, images of two dates, T1 and T2, are stacked
by concatenating them along their spectral dimension. Then,
patches of dimension w by w by 2c are extracted, where w is
the spatial patch size and c is the number of spectral bands of
each image. The CNN takes as input a single patch at time in
order to assign a class label to the central pixel of each patch. 1217



Figure 1: EF approach. Images at different dates (T1 and T2) are concatenated to form an image pair, then, patches are extracted
and inputted to the CNN model.

This procedure is repeated for each image pixel as illustrated
in (Figure 1).

2.2. Random Forest Stack (RF-stack)

RF is a supervised classification algorithm, which creates
trees from randomly selected training samples and makes a
prediction based on the majority vote of each output tree. In
our analysis we follow a strategy similar to EF-stack. The
inputs to the RF are the result of flattening a patch of size w
by w by 2c into a vector of dimension w × w × 2c. As in
the previous approach, this procedure is carried out for each
individual pixel location.

2.3. Change Vector Analysis (CVA)

CVA is an unsupervised technique in which magnitude and
direction of changes are calculated. To determinate the
change and no change areas, a threshold value might be
selected. With the aim to detect the deforestation, the
Normalized Difference Vegetation Index (NDVI) and the
Bare Soil Index (BI) are calculated. NDVI quantifies
vegetation by measuring the difference between near-infrared
and red bands and BI is calculated to distinguish agricultural
lands and non-agricultural lands [9]. These operations are
executed for each pixel at dates T1 and T2. The NDVI and
BI indices are calculated with Equations 1 and 2 respectively.

NDV I =
(NIR−RED)

(NIR−RED)
(1)

BI =
(SWIR+RED)− (NIR+BLUE)

(SWIR+RED) + (NIR+BLUE)
(2)

where, NIR, RED, SWIR and BLUE are the spectral
reflectance measurements acquired in the near-infrared, red,
short wave infrared and blue regions.

The magnitude of the vector represents the changing
intensity S and the direction represents the change type α.
These values are obtained by Equations 3 and 4 respectively.

S =
√
(NDV I2 −NDV I1)2 + (BI2 −BI1)2 (3)

tan(α) =
BI2 −BI1

NDV I2 −NDV I1
(4)

NDV I1, BI1, NDV I2, BI2 represent the NDVI and BI
indices computed on T1 and T2 respectively.

3. EXPERIMENTS

3.1. Study area

The study area is located in the State of Pará, Brazil, centered
on coordinates of 03◦ 22’ 12" S and 050◦ 42’ 36" W. It
corresponds to an area of the BLA, which has been facing
a growing pressure of deforestation with a notable amount
of deforested areas detected by PRODES [3]. The reference
change map (Figure 2-a) is related to the deforestation
occurred between 2016 and 2017 and was downloaded from
PRODES database.

We also use a Landsat 8-OLI image pair, with 30m of
spatial resolution, comprising the studied area. The images
were acquired from the United States Geological Survey
(USGS) in two different dates: August 2nd, 2016 (Figure 2-
b) and July 20th, 2017 (Figure 2-c); with a size of 1300 ×
1100 pixels and seven spectral bands (Coastal/Aerosol, Blue,
Green, Red, NIR, SWIR-1, and SWIR-2) each. Additionally,
an atmospheric correction was applied to each scene, and
then, they were clipped to the area of interest. It is important
to note that these dates were chosen due to the lower presence
of clouds. In fact, PRODES reference were also generated
using images from similar dates.

3.2. Experimental protocol

For the experiments with EF and RF methods, patches of
size 15-by-15-by-14 were extracted from the stacked image
pair considering all bands. This size was chosen after a
preliminary experimental evaluation. Patches located inside
the red squares shown in Figures 2 (b, c) were used to train
the model, while the rest of them were used for testing. Each
band was normalized to take values in the range -1 to 1.

We applied an under-sampling technique to balance the
number of training samples for both classes (change and no-
change). Thus, some randomly selected instances from the
majority class (no-change) were removed to obtain an equal
number of training samples (17,941 patches) for each class. 1218



(a) Ground truth (b) T1: 02/08/2016 (c) T2: 20/07/2017

Figure 2: Deforestation reference set (a) and RGB composition of the selected Amazon Forest region at dates T1 (b) and T2 (b). Red
boxes indicate the training set.

Layer Filter Size Output Size Parameters
Input - 15 ×15× 14 0

Conv1 4 ×4 15 ×15× 96 21600
Conv2 3 ×3 15 ×15× 96 83040
Conv3 3 ×3 15 ×15× 96 83040
Conv4 3 ×3 15 ×15× 96 83040

MaxPool 2 ×2 7 ×7× 96 0
Conv5 3 ×3 7 ×7× 192 166000
Conv6 3 ×3 7 ×7× 192 331968
Conv7 3 ×3 7 ×7× 192 331968
Flatten - 1 ×9408 0
Dense - 1 ×2 18818

Table 1: Parameters of the EF architecture.

We considered four metrics to evaluate the performance of
the three methods: Precision, Recall, F1-score and Overall
Accuracy (OA).

The CNN architecture used in the EF approach is
composed of seven convolutional layers (Conv) with ReLU
activation function, a max-pooling layer (MaxPool), a Flatten
layer and a Dense layer with a Softmax activation function
for the two outputs, associated with the classes deforestation
(change) and no deforestation (no-change). This architecture
is summarized in Table 1. The EF model was trained with
100 epochs, batch size of 64 and with the Adam optimizer, in
contrast to the [6], which used Average Stochastic Gradient
Descent (ASGD). An early stop was added as regularization
technique to avoid over-fitting.

For the RF classifier, the number of random trees and its
maximum depth was set to 300 and 30, respectively. For
CVA, a pixel-wise approach was employed for the estimation
of NDVI and BI indices. We considered only the magnitude
of change, because in our setup there is just one type of
change, namely whether or not the target area underwent a
deforestation. The change map is generated using a threshold
of 0.6, which was selected empirically.

4. RESULTS

Table 2 summarizes the results obtained in terms of Precision,
Recall, F1-score and Overall Accuracy (OA) values for each

method described in Section 2. Note that the EF method
achieved the best results in terms of three out of the four
metrics, identifying more accurately the the deforestation.
This is probably due to the ability of CNNs to learn more
informative features and to model non-linear and complex
input-to-output relationships. In terms of Precision, RF
was the best performing strategy for the class deforestation
(change). However, the Recall was lower, indicating that
there RF tends to produce more false no deforestation (no-
change) outcomes than the other methods. .

CVA presented the lowest success rate for deforestation
detection and the worse result in terms of OA. The poor
results of this method may be related to the indices
adopted to compute the changing intensity, especially the BI.
Additionally, CVA is strongly conditioned to the threshold
definition and the threshold determination depends on the
skills of the analyst. On the other hand, it presented very
good results for the class no deforestation (no-change) .

The Overall Accuracy achieved by EF and RF were greater
than 90%. However, the results related to the deforestation
detection were lower than 60% in terms of F1-Score. This
might be due to the different causes of changes, such as
agricultural or pastoral farming and mining, which leave
distinct footprints in the image.

Figure 3 shows a snip of the change maps delivered by each
method, where true change (yellow), false change (red), false
no-change (blue) and true no-change (white) are represented.
We considered as true change the deforestation pixels
correctly identified and true no-change the no deforestation
pixels that were classified as it. Taking these images into
account, it is possible to perceive how the EF method better
identified deforestation with low false no-change (Figure 3-a)
in contrast with RF, which generated a greater number of false
detection as can be appreciated in Figure 3-b. Likewise, as
it can be observed in Figure 3-c, the deforestation detection
was worse for CVA. In this case, there are a lot of samples
that were not identified as deforestation regions and a salt and
pepper effect can be observed. 1219



a) EF-method (b) RF-method (c) CVA method

Figure 3: Comparison of the change map obtained from the EF, RF and CVA methods on a small scene of the test region.

Metric (%) Method Change No Change

Precision
EF 65.67 97.04
RF 78.22 93.85

CVA 35.10 97.89

Recall
EF 49.95 97.97
RF 41.12 96.49

CVA 29.25 98.38

F1-Score
EF 56.74 97.50
RF 53.90 95.15

CVA 31.91 98.14

OA
EF 96.11
RF 93.98

CVA 82.78

Table 2: Metrics values obtained from EF, RF and CVA
methods.

5. CONCLUSIONS

In this work, an evaluation of an EF CNN method for
deforestation detection in a region of the BLA was reported.
The analysis revealed that the EF model overcomes the
traditional RF and CVA approaches.

EF, being a model based on a deep learning architecture,
presents advantages such as automatic feature learning and
flexibility, which allows improving the representation of the
relationships between the two images (T1 and T2), therefore
improving the deforestation detection performance.

In terms of OA, the results obtained by the EF
are particularly good. However, the detection rate for
deforestation, in terms of F1-score, was lower than 60%.
This shows the complexity and the difficulty of this kind of
application. Thus, although the results are still not good
enough, this work can be considered as an initial study and
a step further to possible solutions to improve the automatic
deforestation detection.

Future works are intended to explore different architectures
as well as changes on the adopted configuration, like using
as input the values from the artificial vegetation, soil and
shadow bands that are used on the PRODES methodology.
Another investigation is related to the usage of Synthetic
Aperture Radar (SAR) data to complement the information
already available from the optical sensor.
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