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ABSTRACT 

 
Climate change is one of the main global concerns today, 

primarily caused by the emissions CO2 into the atmosphere. 

The major emission source of this gas into the atmosphere 

comes from the burning of fossil fuels and the principal 

absorption source is photosynthesis. Using Xco2 and SIF data 

obtained from the Orbiting Carbon Observatory 2 (OCO-2) 

between the years 2015 and 2019, we use anomaly models to 

study their temporal variability in São Paulo - Brazil, and 

complementarily using the ordinary kriging technique, we 

analyze the spatial distribution of the anomalies. Our results 

indicate an inverse relationship between Xco2 and SIF 

anomalies, and that the negative CO2 anomalies (sinks) are 

concentrated in the forest canopy. In general, we observe that 

vegetation covers act as CO2 sinks and that urban 

environments are a source of emissions in the state of São 

Paulo. 
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1. INTRODUCTION  
 

Climate change is one of the main global concerns in the 

current scenario, one of its aggravating factors being carbon 

dioxide (CO2) emissions into the atmosphere. These 

emissions, for the most part, come from the burning of fossil 

fuels [1], in contrast, plants and soil act as sinks of this gas 

[2]. 

  Although plants and soil act as sinks, it depends on 

the intensity of anthropic action on them. Agricultural 

environments for example, at harvest and planting time, can 

act as a source of CO2 to the atmosphere [3]. However, if 

sustainable practices are used in these seasons to minimize 

CO2 emissions, the development phase of the agricultural 

crop can offset what was emitted by assimilating carbon into 

its biomass through photosynthesis [4].  

 Another example is the forests, they store 60% of 

the terrestrial biomass and their soil carbon stock reaches 

40% of the world's stock [5], in this sense, anthropic actions 

in these environments are extremely harmful, given the 

amount of carbon that would be emitted [6], in addition to the 

loss of biodiversity [7].  

In this context, the study of anomalies of the average 

column of CO2 concentration in the atmosphere (Xco2) has 

become a great way to monitor carbon sources and sinks, at 

globally [8] and regional [9] scales. However, some of this 

model disregarded atmospheric transport [10], and not further 

explore is how each use and occupation act on these 

dynamics.  

 The studies of anomalies in large areas are possible 

due to the launch of space missions whose goal was to 

monitor this gas, such as the case of the Orbiting Carbon 

Observatory 2 and 3 (OCO-2 and OCO-3) [11, 12]. In 

addition to enabling Xco2 monitoring, these two missions 

also monitor Solar-Induced chlorophyll Fluorescence at 757 

nm and 771 nm (SIF) [13].  

 The relationship between Xco2 and SIF is widely 

explored in various contexts and scales, such as on global 

scales [12] and regional scales [14], in agricultural 

environments [15] or forests [16], and all these studies point 

in the same direction, that the relationship between these two 

variables is inverse Thus, we can assume that the decrease in 

Xco2 values and the increase in SIF values are a consequence 

of photosynthetic activity [15]. 

 Given this, aiming to elucidate the role of forests and 

agriculture in this context, we investigate how these land uses 

behaviors as well in other environments, elucidating how 

photosynthesis influences different land uses and 

occupations. 

 

2. MATERIAL AND METHODS 

 
2.1 Study area and land use data 

The study region is the state of São Paulo, Brazil, which is 

2.5 × 105 km2 in area. The state is composed of different land 

covers, and this land covers was classified according with 

Copernicus data [17]. 

  

2.2 Data from OCO-2 

In this study, we use Xco2 and SIF757 data for the time series 

from January 2015 to December 2019, with a spatial 

resolution of 0.25°, product version 9, where these data are 

already preprocessed before availability, that is, the data 

already has the bias corrected and with the best coverage 

quality (quality flag = 0, alert level < 12) [11]. 
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2.3 Anomalies Models 

2.3.1 Xco2 anomalies  

The anomaly model used was proposed by Hakkarainen et al 

[8], where positive anomaly values (hotspots) are considered 

as possible sources of CO2 emission to the atmosphere, and 

negative anomalies (coldspots), are considered as possible 

CO2 sinks, however, because our study is regionalized, unlike 

the baseline study that was conducted at a global scale, we 

adapt the formula to our purposes (Eq. 1). Recently 

Labzovskii et al. [9] also made adaptions in the original 

formulation for the same reasons: 

 

𝑋𝑐𝑜2 (𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠) =  𝑋𝑐𝑜2 (𝑖,𝑗) −  𝑀𝑒(𝑋𝑐𝑜2 (𝑗)) (Eq. 1) 

 

Where 𝑋𝑐𝑜2 (𝑖,𝑗)is the i observation at the year j, and 

𝑀𝑒(𝑋𝑐𝑜2 (𝑗)) is the Xco2 median for the year j. 

 

2.3.2 SIF anomalies 

The fluorescence (i.e., SIF) anomaly model adopted was 

based on the study by Zhang et al. [18]. following the same 

logic as the Xco2 anomaly model (Eq. 1), we adapted the 

original model to an annual scale to make our analyses more 

realistic. 

 

𝑆𝐼𝐹(𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠) =  
𝑆𝐼𝐹(𝑖,𝑗)−  𝑆𝐼𝐹(𝑗)

  𝑆𝐼𝐹(𝑗)
  (Eq. 2) 

 

Where 𝑆𝐼𝐹(𝑖,𝑗) is the i observation at the year j, and  𝑆𝐼𝐹(𝑗) is 

the      mean value of fluorescence for the year j. 
 

2.4 Spatial analysis     

The spatial variability analysis of Xco2 and SIF anomalies 

was calculated by the ordinary kriging (OK) interpolation 

method, the interpolation was made directly in ArcMap 

software. The data that constituted the analysis was the 

general averages for each coordinate over the entire time 

series. 

In addition to kriging, we analyzed the dispersion 

measures (i.e., mean, standard deviation) of the anomalies for 

the main land use/cover in the study area. The land-use 

information was collected through Copernicus dataset.  

For this, we used the locations in the kriging that 

matches with the land use and retrieved these values using the 

tool extract by mask in the ArcMap software. 

 

3. RESULTS 

 

Concerning the spatial distribution of anomalies, Xco2 

(Figure 1a) has a minimum of -1.65 ppm (coldspot) and a 

maximum of 1.3 ppm (hotspot) for the entire period analyzed 

(2015 to 2019), while the anomalies of SIF757 (Figure 1b) 

ranged between 0.45 and -0.47. There is an inversion between 

the SIF757 and Xco2 anomalies in certain regions of the state, 

as in the central region (longitude between 50 and 49 w, 

latitude ~22 S), while there is a coldspot of Xco2 in that region 

we can also observe a positive anomaly of SIF. A little above 

the highlighted point, there is the presence of a hotspot for 

CO2 concentration while for SIF it is a negative anomaly. In 

the south of the state, the same occurs, with an inverse 

relationship between the variables, being there a negative 

anomaly for Xco2 and a positive for SIF. At the eastern border 

of the state, from south to north, there is a 'pathway' of Xco2 

hotspots while for some points in this region the SIF shows 

negative anomalies (Figure 1). 

 
Figure 1. Space patterns of the average Xco2 (a) and SIF (b) 

anomalies for São Paulo’s State during 2015-2019 using 

ordinary kriging. 

Considering each land use and land cover in the 

region, the average Xco2 anomaly, in the whole time-series, 

for agricultural use is -0.14 ± 0.55 ppm, concerning forest is 

-0.28 ± 0.49 ppm. For herbaceous vegetation it is -0.28 ± 
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0.54, in shrubland it is -0.25 ± 0.54 ppm and finally in urban 

areas, it is 0.03 ± 0.51 ppm (Figure 2a). Concerning the 

averaged anomalies of SIF in the years analyzed above the 

land use, in the agricultural environment, the average was -

0.02 ± 0.15, for the forest was 0.05 ± 0.16, herbaceous 

vegetation was 0.02 ± 0.16, concerning shrubs was -0.004 ± 

0.15 and in urban use was 0.005 ± 0.15 (Figure 2b). 

 
Figure 2. Box plot of Xco2 and SIF anomalies from 2015-2019 

estimated by kriging, considering the main land-

use/occupation. 

 

4. DISCUSSION 

 

It can be noted that the forest, in general, is the use that most 

acts as a carbon sink and at the same time is where the highest 

average positive anomalies of SIF occur (Figure 2). Forests 

alone are responsible for 60% of the planet's photosynthesis 

and terrestrial biomass, carrying out about 30% of primary 

production [5]. Moreover, due to the stability of this 

ecosystem, the photosynthetic activity in this environment 

does not show much variability throughout the [19] making 

this use one of the most indispensable in the context of CO2 

mitigation. 

 In the agricultural area, emissions are highly 

heterogeneous.  In the São Paulo state, those areas present 

greater variability in Xco2 and SIF anomalies and represent a 

critical point in the carbon balance, since some of these 

agricultural uses can be converted into potential carbon sinks 

[4]. More conscious agricultural production models that the 

state of São Paulo has adopted since 2012, employing 

techniques such as no-till farming and ground cover, 

encouraging the implementation of agroforestry systems in 

addition to not advancing the agricultural frontier in natural 

environments, but rather recovering degraded pastures 

[20,21], provide strategies to control agriculture-related 

carbon emissions. However, not all areas of agricultural use 

act as a sink, these areas are possibly regions where 

management activities are negatively affecting CO2 

assimilation (Figure 1a, and b).   

 As in other studies, we find that the urban 

environment is a source of CO2 in the atmosphere [8, 9]. This 

result may be related to several factors, the main one being 

fossil fuel burning [1]. Some actions to reverse this scenario 

would be the investment in green areas within urban centers 

[22], other actions can be the replacement of fossil fuels for 

biofuels such as ethanol, given that Brazil is the second-

largest producer of this fuel [21]. 

 

5. CONCLUSIONS 

 

The forest is the largest carbon sink among all uses and 

inversely presents the highest SIF anomalies, demonstrating 

the importance of maintaining this ecosystem for São Paulo’s 

state in Brazil. The agricultural environment, in general acts 

as a sink, however in some places and depending on 

management conditions it can act as a source of carbon. 

Another key point, is the seasonality, however, due to 

limitations in the amount of available data it was not possible 

to study this aspect. Regarding shrubs and herbaceous 

vegetation, they can be used as a short-medium term strategy 

for the implementation of green areas in urban environments, 

aiming to reduce the emissions that this use is responsible for. 
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