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ABSTRACT 

 

Here, we evaluated the combination of five 

satellites/sensors for improving burned area (BA) 

detection over the Amazon basin. Using a data set 

of 2,400 burn/no burn points by visual inspection 

in 2016, we investigated several spectral indices 

and ingested them into data mining algorithms to 

evaluate their burning area detection performance. 

Better results were provided with attribute 

selection combining Sentinel-2 (S2) and MODIS 

indexes (96 %), which were not significantly better 

than S2 indexes alone (95 %). The worst was the 

Sentinel-1 SAR data with 85 % accuracy. This is 

the first large-scale data research to evaluate the 

potentiality of combined temporal, spectral, and 

spatial resolutions for BA detection across the 

Amazon. 

Index Terms — Rainforest, Carbon emission, 

Wildfires, Machine learning, Cloud computing. 

 

1. INTRODUCTION 
 

Drought severity and frequency are likely to occur in the 

future over Amazon, increasing the risk of forest degradation 

and carbon emissions due to biomass burning [1]. Besides the 

notable biodiversity reduction, there is a claim that it will also 

create positive feedback, culminating in the Amazon forest's 

new and unstable alternative state [2].      

Therefore, it is imperative to provide accurate and 

annual fire scars in the Amazon with timely and low-cost 

detection. As in [3], the leading global products use the 

resources of one or two satellites/sensors to provide annual 

fire scars. Therefore, there is a trade-off between spatial 

resolution and temporal resolution. High spatial resolution 

sensors (~30 m) often detect small fire scars but lose many 

scars due to low revisiting time in cloudy environments, such 

as the Amazon. On the contrary, low spatial resolution 

sensors (~500 m) can detect many fire scars quickly but lose 

small ones. So, we evaluated five satellites/sensors in 

combination to improve temporal and spatial resolutions to 

detect fire scars in the Amazon basin. 

First, we identify 2,400 burn/no burned points across the 

Amazon basin in 2016 by visual inspection through time 

series of the set of sensors in a cloud processing Google Earth 

Engine (GEE). Second, several spectral indices commonly 

reported in the literature were ingested in a data mining 

algorithm to perform classification. The accuracy of 

classification was provided by overall accuracy, root mean 

square error and current burning maps comparisons.    

 

2. MATERIAL AND METHODS 

 

The study area encompasses the Amazon basin, including 

boundaries to the Cerrado biome, according to Eva et al. [4]. 

 

2.1. Sampling collection 

We collect 2,400 burn/no burn point by visual inspection 

across the Amazon basin (Fig. 1), using time series analysis, 

active fire data (FIRMS), and burned area (MCD64) to train 

the algorithm.  

We used time series to identify pixels that have an evident 

change in the vegetation index time series (e.g. NBR, 

normalized burned ratio) coincident with the burn date from 

MCD64 (see example in Fig. 2) and labelled to the burned 

pixel. Thus, no burned pixels were identified by pixels with 

no changes in the time series.  

 

Figure 1. Points of burn/not burned across Amazon Basin. 
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Figure 2. Time series of each sensor showing the burned date 

(vertical line) and the available images throughout the year (dots). 

 
Almost 50% of the pixels were observed as burn between 

August to September (Fig. 3a) and with confidence >70% by 

FIRMS data (Fig. 3b).  

 

2.2. Datasets 

Five satellite/sensors were tested and had spectral indexes 

extracted to create a data set available on GEE: i) OLI 

Landsat 8 surface reflectance 30 m; ii) MODIS MOD09A1 

V6 surface reflectance 8-day Global 500 m; iii) Sentinel-1 

SAR GRD C-Band 10 m geocoded, iv) Sentinel 2 TOA 

reflectance 10-60 m, and v) Proba-V 100 m 3-day 

composites.  

 

2.2.1. Preprocessing data  

 

The multispectral data were first filtered using a cloud mask 

at each of the four multispectral sensors. Then, several 

spectral indexes often used to detect BAs (e.g. NBR, NDVI, 

NDMI) were calculated for each sensor when all bands were 

available. For instance, there is no SWIR-2 in PROBA-V. 

Besides, we processed the linear spectral mixture model to 

provide the soil, shade, and vegetation fractions at each 

multispectral sensor [5]. 

For S1, a median filter combined with a multitemporal 

QueganYu filter was applied [6]. Backscattering was 

previously transformed to linear scale and gamma values. 

The attributes were the two polarizations VV and VH, the 

ratio (VH/VV), the normalized difference (VV-

VH/VV+VH), and the difference (VV-VH), mean 

((VH+VV)/2), and sum (VV+VH) between them.  

We performed temporal reductions in the annual time 

series GEE over Amazon mask at each band, such as 

percentile 0.9 and 0.1, minimum and maximum value, 

standard deviation, and median.  

 

2.3. Data mining 

 

Two data mining algorithms were applied to spectral indexes 

and bands to determine the best subset of each sensor's data 

and combined (545 attributes). We have tested the CFS filter 

and Wrapper, both with 10-fold cross-validation with 1000 

iterations [7,8].   

 
Figure 3. a) Frequency of burned points per month using burned 

date from MODIS. b) Confidence of active fire by FIRMS. 

 

These techniques were applied to determine the best 

predictors to classify burn/no BAs in the Amazon with the 

least human intervention. 

 

2.4 Classification 

For classification purposes, we tested 10-fold cross-

validation with the Random Forests algorithm, and the 

performance of each sensor and combined was provided with 

the following statistics: Overall accuracy (OA), Producer and 

User’s Accuracy (PA & UA). Mean Absolute Error and 

Relative Mean Square Error (MAE and RMSE%).  

 

2.4 Pos-classification 

The classification result was masked, a posterior, by the 

Ground surface water product avoiding misclassification 

with inland water [9]. Also, a 3x3 kernel-mode filter was 

applied to reduce isolated pixels. Final classification was then 

exported in 100 m spatial resolution.  

 

3. RESULTS 

 

3.1. Spectral indices for burning detection 

Data mining algorithms selected several spectral indices at 

each sensor (Table 1) and combined (Table 2). We highlight 

the Char-scar Index (CSI) (ρNIR/ρSWIR2), which the minimum 

value during the year indicates a high probability of such 

pixel being burned and appears as one of the best indices of 

the four optical sensors [10]. Other indices commonly 

reported in the literature as Normalized Burned Ratio (NBR) 

(ρNIR – ρSWIR2/ ρNIR + ρSWIR2) and (NBR2) (ρSWIR2 - ρSWIR/ 

ρSWIR2 + ρSWIR) were also a good indicator of burning [11].  

The maximum and standard deviation of the 

Normalized Difference of Moisture Index NDMI (ρSWIR – 

ρNIR/ ρSWIR + ρNIR) and Mid-Infrared Burn index (MIRBI) (10 

(ρSWIR2) - 9.8(ρSWIR) + 2) have shown promising results in 

MODIS, OLI, S2, and Proba-V sensors [12, 13]. 

However, considering all sensors combined, CSI 

appears only in Sentinel-2, and no Sentinel-1 indices or bands 

were selected by any data mining algorithms (Table 1). 

 

3.2. Overall performance after Wrapper selection 

In general, the Wrapper algorithm performed well in 

selecting the best subset for classification purposes and was 

chosen to test classification accuracy.  
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Sensor Best indices 

Proba-V 

CSI min, EVI min, NDCI p90, NDMI max, NDMI 

sd*, NDMI2 sd, NFDI min, Shade p10, Soil max, 

Soil p90, Veg min*, Veg p10 

MODIS 

B2 min, B3 min, CSI min*, MIRBI max*, MIRBI 

sd, NBR min*, NBR sd, NBR2 min, NBR2 sd*, 

NDMI max*, NDMI sd, NDVI sd, Shade min, 

Shade sd, Veg max 

OLI 

B1 p90, B5 p10, BAI max, CSI min, MIRBI max, 

MIRBI sd, NBR2 median, NBR2 min, NBR2 sd, 

NDWI sd 

S2 

B1 median, B2 max, B9 max, B9 median, B9 sd, 

B12 median, BAI sd, CSI min*, NBR min, NBR sd, 

NBR2 sd*, NDMI max, NDMI median, SAVI min, 

SAVI p10, Veg min 

S1 

(VV-VH) max, ((VH+VV)/2) p90, RGI median, 

RGI max, RGI sd, RPC2 median, VH median, VH 

min*, VV median, VV p90, VV sd 

All 

NDMI sd (Poba-V), EVI p90, MIRBI max*, MIRBI 

sd, NBR sd*, NBR2 min, NBR2 sd*, NDMI max 

(MODIS), B9 max, CSI min*, MIRBI sd, NBR min, 

NBR sd, NDMI max, SAVI 100 min, Veg min (S2), 

BAI p90, MIRBI sd, NBR2 sd, Veg min (OLI) 

Table 1. Best indices for burned area detection. In asterisks the 

indices selected by both CFS and Wrapper algorithms. 

 

Alone, each satellite/sensor's best subset has overall 

accuracy OA > 90%, excluding S-1 with OA = 0.82 (Table 

2). In general, combined sensor’s presented the lowest mean 

absolute error and RMSE (13.96 and 34.76%, respectively). 

 

3.3. Burned area comparison 

We computed a total BA for 2016 of 438,392 km² in red in 

Figure 4, representing roughly 5% of the whole Biome (7.2 

Mi km²). This value corresponds threefold to the MCD64 

product (143,610 km²). The most significant differences were 

observed in grassland in Bolivia and Roraima state in the 

Brazilian Amazon (Figure 5). 

  

Figure 4. Classification using four multispectral sensors. 

 

Table 2. Overall accuracy and mean error of the classification after 

wrapper filtering. 

 

4. DISCUSSION 

 

4.1. Burned area detection 

Burned areas detection in tropical regions is one of the major 

challenges in remote sensing for several reasons: 

i) Detecting surface or underground fires in dense forests can 

be detectable only by active fire sensors but untraceable for 

mapping using passive sensors. In addition, low-intensity and 

understory fires may not induce substantial changes in the 

canopy whereby optical sensors might detect, although this 

may impact forest functioning for several years [14,15,16].  

ii) Temporal difference between fire extinction and image 

acquisition. Post-fire vegetation can recover quickly in 

grasslands and open forests, which means that the gap for 

burned detection can be shorter than a singular 

satellite/sensor could provide, mainly in low-intensity fires. 

Also, understory fires are only identified based on multiple 

years of degradation patterns in spectral indexes [16].  

On the other hand, more intense fires reduce the water content 

and produce more ash and charcoal that contrast with green 

vegetation reflection, which could be easily mapped. 

Therefore, the timing of burning is crucial for modelling 

forest fire emissions since biomass emissions factors and 

intensity vary seasonally [16].  

iii) Tropical regions are often covered by clouds, hindering 

BA detection, which requires active sensors and a synergic 

combination of multiple sensors to reduce the temporal 

resolution [3,17].  

 

4.2. Estimation of burned area and techniques for 

classification 

The total BA comprises almost three times what was 

provided by the MODIS 500 m product. Small burn scars 

mapped with Landsat 30 m resolution can increase up to 45% 

total BA over Cerrado compared to MODIS product [17]. 

Also, differences in the choice of the resolution of the product 

can represent 66% less fire carbon emission across Amazon 

using 30 m spatial resolution and 250 m [18]. Recent 

approaches combined Landsat imagery and a deep learning 

algorithm to improve BA detection, with an overall accuracy 

of 97% [19].      

Sensor OA PA UA MAE RMSE% 

Proba-V 0.90 0.89 0.89 31.99 55.27 

MODIS 0.92 0.90 0.94 24.38 48.48 

OLI 0.90 0.89 0.91 28.54 52.19 

S2 0.95 0.93 0.96 18.44 41.38 

S1 0.82 0.85 0.80 52.27 72.22 

All 0.96 0.96 0.97 13.96 34.74 

https://proceedings.science/p/164090?lang=pt-br 67

https://proceedings.science/p/164090?lang=pt-br


 

 

 

 
Figure 5. Comparison to MCD64 v6 product. 

 

5. CONCLUSIONS 

 

Machine learning techniques applied to ingest several remote 

sensing images on cloud computing can tackle one of the 

most challenging tasks: improving BAs' detection in tropical 

regions. Here, synergetic use of multiple satellite/sensors has 

detected three times more BA than using a single product 

(MCD46-MODIS). Also, the algorithm's performance was 

over 80% using a single satellite/sensor and at 96% when 

combined. The differences in BA detection have crucial 

importance for estimating burning emissions. Therefore, it is 

imperative having up to date algorithms to improve BA 

detection across Amazon. 
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