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ABSTRACT

This study presents an approach for automated detection
of vessels using convolutional neural networks (CNNs) and
visual transformers (ViTs). The approach involves comparing
different deep learning models including RoboFlow, You Look
Only Once v8 (YOLOVS), RetinaNet, Detection Transformer
(DETR), and Real-Time Detection Transformer (RT-DETR).
The comparison includes a general accuracy metric, mean
Average Precision (mAP), and time performance metrics,
training time, frames per second (FPS), and latency. The
dataset selected for the study is HRSC2016-MS, which
contains 1,680 optical remote sensing images, covering 7,655
labeled instances of vessels and presenting a variety of
conditions, such as lighting, weather, and different scales.
Considering all the metrics, YOLOVS stands as the best
approach confirming the current popularity of such a family
of object detectors.

Keywords — convolutional neural networks, deep learning,
remote sensing, vessels, visual transformers.

1. INTRODUCTION

In 2022, more than 2 million ships were used to dominate
80% of international trade, transporting a wide range of
cargo that ranges from bulk products, like grains and fuels,
to containerized cargoes, like clothing and electronics. In
addition to their primary function in transporting goods,
ships play an essential role in the exploration of oceanic
resources, such as fishing and mining, in the installation of
communication cables between continents, in the transport
of people as in the Amazon region, and are fundamental for
the tourism industry [1]. By the end of 2024, it is estimated
that 360 cruise ships will transport 30 million passengers,
marking a 9.2% increase compared to 2019 figures, prior to
the pandemic [2].

Vessel monitoring is essential for a wide range of purposes
such as maritime safety, traffic monitoring, enforcement
of the National Security Law, environmental management,
search and rescue, research and development, and route
planning. In a way, vessel monitoring not only promotes
safety, but also plays an important role in environmental
protection and law enforcement [3]. Detecting vessels is not
a trivial problem, given that the context in which the object
is inserted must be taken into account, that is, the variation in
light, weather and scale of the vessel can influence detection.

In the context of computer vision, object detection is a

task which consists of the ability to identify the location of
an object in an image and classify it. In this study, object
detection consists of finding the relevant classes, such as
a vessel present in the image. Therefore, a machine/deep
learning model can be used to perform detection using a
bounding box in the area of the image presented.

Some approaches have been presented to solve this
problem. In [4], the authors analyzed an approach for real-
time ship detection using synthetic aperture radar (SAR)
imagery. In the experiment, the authors compared the
obtained results with other models. The fastest and most
accurate detection was obtained by the You Look Only Once
(YOLO) model.

Another study also addressed ship detection using
convolutional neural networks (CNNs) [5]. In this work,
the authors proposed the Rotate YOLO (RYOLO) models,
designed to detect ships accurately and quickly, taking into
account the vessels’ orientation angle. RYOLO delivered a
mean Average Precision (mAP) of 96.7% and a processing
speed of 45.6 frames per second (FPS), standing out as an
effective approach for ship detection in maritime videos.

Despite these previous studies, it is important that more
detailed investigations can be conducted considering different
types of models, in addition to CNNs, and various metrics,
addressing not only performance in terms of accuracy but
also in temporal terms. This type of evaluation can be highly
valuable in suggesting more suitable solutions for researchers
and practitioners in the field of remote sensing (RS).

Therefore, this study presents an approach for automated
detection of vessels using not only CNNs but also the
most recent visual transformers (ViTs). The approach
involves comparing different deep learning models
including RoboFlow [6], YOLOvS [7], RetinaNet [8],
Detection Transformer (DETR) [9], and Real-Time Detection
Transformer (RT-DETR) [10]. The comparison includes an
overall accuracy metric, mAP, and time-performance metrics,
such as training time, FPS, and latency. The dataset selected
for the study was HRSC2016-MS [11] which contains
1,680 optical remote sensing images, covering 7,655 labeled
instances of vessels and presenting a variety of conditions,
such as lighting, weather, and different scales. The specific
goals of the study are: (i) to automatically detect vessels;
(ii) to identify the model, among CNNs and ViTs, with the
best generalization ability; and (iii) to evaluate execution
time, FPS, and latency. Thus, it is possible to offer more
appropriate suggestions for this problem, according to
various analytical perspectives.
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2. MATERIAL AND METHODS

2.1. Dataset

HRSC2016-MS is an expanded version of the HRSC2016
dataset, focused on vessel detection in optical remote sensing
images [11]. It combines original HRSC2016 data, captured
in ports in the United States, with new Google Earth data,
mainly from the port of Murmansk, Russia. With a total of
1,680 images (1,070 from HRSC2016 and 610 from Google
Earth), the dataset covers different situations (day/night,
clear/cloudy sky) and different shipping schedules. New
annotations have been included, mainly for small vessels,
increasing the number and diversity of sizes and proportions
of the instances. Figure 1 shows four examples of images
from the dataset.

Figure 1: Examples of images contained in the dataset.

Other relevant information of the dataset are: (i) "Image
Resilience" between 361 x 339 ~ 1329 x 830; (ii) "Instances":
7,655; (iii) "Bounding Box Sizes": 5 x 10 ~ 489 x 739; (iv)
and "Instance Proportions": 0.092 t011,692. It is important
to highlight that the dataset contains a single instance “ship”
which means ship.

2.2. Preprocessing

Two techniques were applied to preprocess the data to
guarantee consistency and efficiency in model training. An
auto-orientation step was applied to the images, ensuring that
they were all aligned more consistently, regardless of their
original orientation. This technique ensures that features of
interest are correctly positioned in all images.

Furthermore, all images with different dimensions (361
x 339, 1329 x 830 pixels) were resized to a resolution
of 640 x 640 pixels using the stretching technique. This
method adjusts the original image dimension to the new size,
maintaining the overall visual integrity, even though it may
distort the aspect ratio. Resizing is essential to standardize
the model input, contributing to optimized processing and
computational efficiency.

2.3. Data Augmentation

To increase the diversity of the dataset, several
transformations were applied to the images, aiming to
introduce variations in the samples. The transformations
applied include: (i) Horizontal and Vertical Flipping: the
images were flipped horizontally and vertically; (i) 90°

Rotation: the images were rotated both clockwise and
counterclockwise; (iii) Grayscale: conversion to grayscale
applied to 19% of the images; (iv) Blur: blur applied with an
intensity of up to 1 pixel; and (v) Noise: noise added to up to
1.05% of the pixels.

3. SELECTED MODELS

3.1. Roboflow

Roboflow is a computer vision platform that enables the
management and annotation of datasets for tasks such as
object detection, classification, and instance segmentation.
Users can upload their own data to train models such as
CogVLM, YOLO-NAS, YOLOV9, and YOLOVS, as well
as the Roboflow Instance Segmentation Model, Yolo World
Model, and OCR Model [6].

3.2. YOLOvS

The YOLO model family is one of the most widely
recognized object detection approaches, balancing speed
and accuracy by reframing the task as a single regression
problem, directly mapping from image space to bounding
box coordinates and class probabilities [7]. Its architecture
comprises three main components: the backbone, which
extracts meaningful patterns at multiple scales; the neck,
which performs feature fusion and integrates contextual
information; and the head, responsible for generating
bounding boxes and confidence scores [12]. In the
YOLOvV8 model, 50 training epochs were used, with a
batch size of 16, learning rate of 0.001, momentum set
to 0.937, and optimization with stochastic gradient descent
(SGD). Intersection over Union (IoU) and Non-Maximum
Suppression (NMS) thresholds were set to 0.2 and 0.6,
respectively, along with early stopping with a patience of 50
epochs and input normalization.

3.3. RetinaNet

RetinaNet [8] is an object detection algorithm known for
its use of focal Loss, a loss function designed to handle
class imbalance common in object detection tasks. This
approach reduces the weight of easy examples and increases
the focus on hard examples, improving the detection of
small and rare objects. The RetinaNet architecture employs
a backbone network, such as ResNet or Feature Pyramid
Network (FPN), to extract features, and a detection head that
predicts bounding boxes and class labels. The use of anchors
at multiple scales and aspect ratios enables the identification
of objects of different sizes and shapes [8].

As for training, hyperparameters include the total number
of iterations, defined to span 50 epochs, the number of
data loading workers to parallelize data handling, the per-
image batch size adjusted to optimize memory, and a constant
learning rate of 0.001.

34. DETR

DETR simplifies object detection by removing traditional
components such as anchors and NMS [13]. While traditional
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models use anchors to predict object locations, DETR
employs a transformer to directly detect objects [9]. Detection
in DETR begins with feature extraction using CNNs like
ResNet. These features are then processed by a transformer
encoder, applying self-attention to capture the global context
of the image [14]. The transformer decoder generates
predictions with a fixed set of queries, making the process
more efficient [15]. DETR training used a learning rate of
1x 1074, weight decay of 1 x 10—, and batch size of 8, for
50 epochs.

3.5. RT-DETR
RT-DETR is an optimized version of the DETR
architecture, designed for speed applications without

sacrificing accuracy. While DETR simplifies object detection,
its real-time performance is limited by the computational
demands of transformers, which involve many self-attention
operations [16]. According to the authors, RT-DETR reduces
this complexity by decreasing the number of self-attention
heads and replacing some operations with more efficient
convolutional layers for feature extraction. RT-DETR’s key
innovation is its hybrid architecture, combining CNNs for
local feature extraction with transformers for modeling global
dependencies. The training configuration includes 50 epochs,
a learning rate of 5 x 10~° , and 300 warm-up steps, with a
batch size of 16 samples per device.

3.6. Evaluation Metrics

The mAP metric is widely used for evaluating object
detection models as it combines both precision and
localization [17]. The mAP calculation for single-class tasks
begins with the Average Precision (AP), based on the IoU
metric, which measures the overlap between the predicted and
ground truth bounding boxes [18].

The mAP metric is derived from a precision-recall curve,
where AP is the area under this curve. The mAP is the average
AP across a range of IoU thresholds, reflecting the model’s
ability to correctly detect under different overlap criteria such
as follows: (i) mAP 50:95:: average precision over loU
thresholds from 0.5 to 0.95, assessing the model’s consistency
across various levels of overlap; (ii) mAP 50: requires
a minimum 50% overlap for a detection to be considered
correct, generally resulting in higher mAP values; and (iii)
mAP 75: requires a minimum 75% overlap, being a more
stringent metric that reflects higher precision.

The latency and FPS of a model measure its response
time and processing capability. Latency is calculated by
measuring the time taken to process a single image, while
FPS is the inverse of the average latency, indicating frames
per second. These values were obtained using the best saved
model, reflecting the optimized performance.

4. RESULTS

Table 1 presents the outcomes related to mAP. RT-DETR
demonstrated the highest detection capability, with a mAP
50:95 of 0.75, mAP 50 of 0.88 (quite close to the best
approach in this case, i.e., Roboflow), and the highest

mAP 75 of 0.83. This indicates strong performance across
different IoU thresholds. RoboFlow and YOLOVS presented
competitive results, with high mAP 50 values (0.89 and 0.88,
respectively), although RT-DETR stands out at higher IoU
thresholds. RetinaNet and DETR lag behind in terms of mAP
50:95 and mAP 75, especially DETR, which has the worst
performance of all.

Model mAP 50:95 | mAP 50 | mAP 75
Roboflow 0.70 0.89 -
YOLOv8 0.69 0.88 0.81
RetinaNet 0.61 0.80 0.64

DETR 0.53 0.77 0.59
RT-DETR 0.75 0.88 0.83

Table 1: mAP values.

In Table 2, DETR compensates with higher speed,
achieving the highest FPS (143.47) and the lowest latency
(7 ms), though it has the longest training time (4.86 hours).
YOLOVS strikes a good balance with fast training time (0.55
hours), high FPS (109.88), and low latency (9.10 ms).

Surprisingly, RT-DETR did not perform well in temporal
terms as promised. Its FPS and latency are considerably
worse compared to the best models in this regard (DETR and
YOLOVS). Although its training time is shorter than DETR’s,
it is still far inferior to what is achieved with YOLOVS. Thus,
these results do not support the claim of RT-DETR’s authors.

Model Temp_Train (h) FPS Latency (ms)
Roboflow - 2.31 431.8
YOLOv8 0.55 109.88 9.1011
RetinaNet 3.38 17.79 56.301

DETR 4.86 143.47 7.00
RT-DETR 3.23 30 33.00

Table 2: Training time, FPS, and latency values.

As shown in Figure 3, it is possible to observe that the
YOLOv8 model is able to detect vessels that are close to each
other very well. In Figure 2, it is also noticeable that the
model has difficulties when the color of the vessels is very
similar to that of the sea. A clear example of this can be
seen in the upper right corner, where the model was unable
to detect a small vessel.

Figure 2: Comparison 1 between ground truth and object
prediction via YOLOVS.
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Figure 3: Comparison 2 between ground truth and object
prediction via YOLOVS.

5. DISCUSSION

In the experiments, it is important to highlight that most of
the models were tested with 50 training epochs to ensure a fair
comparison. The only model trained with a different number
of epochs was that from the Roboflow platform, which was
trained with 300 epochs, as it is not possible to modify this
parameter on the platform.

Considering the accuracy metric, mAP, RT-DETR was the
most outstanding approach. But, for our surprise, this model
presented one of the worst performance under the temporal
perspective.

Taking it account all the metrics, the conclusion is that
YOLOvV8 was the most suitable model. Its mAP 50 is equal
to RT-DETR and very close to the performance of Roboflow
(the best in this case), and its mAP 75 was quite close to the
best approach (RT-DETR). YOLOv8 was the fastest model
to train, and its FPS and latency values were inferior to
DETR but considerably better than RT-DETR. These results
corroborate the popularity of the YOLO family of object
detectors.

6. CONCLUSIONS

This study aimed to propose an intelligent approach
for vessel detection using CNNs and ViTs. The results
indicate that the YOLOv8 model presented the best overall
performance (accuracy and temporal), demonstrating high
assertiveness in different contexts and vessel sizes. These
results have the potential to significantly improve maritime
safety and environmental monitoring by enabling accurate
detection in a variety of scenarios.

Future research includes the use of other deep learning
models and more representative databases, considering the
national territory. Additionally, the problem will be
approached as a multi-class one, not only identifying the
presence of a vessel but also determining its type.
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