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Abstract.  On most areas where agriculture is developed in Uruguay, soil properties are highly variable in space
and as a result the conditions for crop growth are also highly variable. Farmers have interest in knowing final
yield pre-harvest as well as the existing spacial variability to decide management practices during the growing
season. The objective of this study was to evaluate a method to optimize a simple crop model (pySAFY) to predict
leaf area index through the assimilation of time series of Landsat images and later use the calibrated parameters
(at the pixel level) to estimate pre-harvest yield and crop growth. The model used is based on the SAFY model
(Simple Algorithm for Yield estimate), which was developed by Duchemin (2008), however major changes were
made in the model to represent nitrogen accumulation and remobilization in the above ground biomass, which is
restricting yield more than other factors represented in the original SAFY (water and heat stress). Both Landsat
7and 8 images free or nearly free cloud acquired during the growing season were used. The study sites were
located at 33°34’44S latitude and 58°10’06W longitude in the south west of Uruguay and were planted with
wheat. The model allowed to predicted average yield and spacial variability with acceptable accuracy. Yield was
overestimated in areas of the field where Landsat 7 images have SLC gaps or underestimated in areas identified as
low yield potential areas. Spacial (30x30m) and temporal resolution of Landsat was not enough to attain high
accuracy in predicting micro variability. The method proved useful to use images readily available and allowed to
predict pre-harvest yield with enough precision for most practical purposes.
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1. Introduction.

Timely assessments of crop growth conditions and early yield estimations are demanded
by crop insurance companies, and are used to organize logistics of harvest and support in-
season  decision  making.  During  the  last  decade  pre-harvest  yield  estimation  has  been  a
problem tackled from several approaches that in general used remote sensing, crop modeling
or a combination of both. The application of crop models on large areas has been hampered
by lack of sufficient and accurate information about inputs. The main problem to achieve
rational  accuracy  with  crop  models  is  the  difficulty  to  know  input  parameters,  initial
conditions  and  manager  practices.  Since  the  beginning  the  development  of  crop  growth
models was to simulate agricultural field where soil, climate and agricultural practices were
well know spatially homogeneous (Mass, 1988; Guérif and Duke, 2000; Hatfield et al., 2008).

On  most  areas  where  agriculture  is  developed  in  Uruguay,  soil  properties  are  highly
variable in space and as a result the conditions for crop growth are also highly variable.  When
using  fully  developed  crop  models  to  simulate  growth  and  yield  over  large  areas  it  is
necessary  to  know  the  input  and  parameters  for  each  homogeneous  zone  or  grid  cell.
Therefore the application of crop models to predict growth and yield at field scale is still a
challenge. Remote sensing reflectance of the crop over the growing season has been used to
improve model capability to predict yield over large areas. While the data of remote sensing
provides a quantification of the actual state of the plant community attributes (leaf area index,
accumulated  aboveground  biomass,  nitrogen  status)  in  discrete  time,  the  growth  models
supply  a  continuous  description  of  plant  growth.  In  this  manner  the  growth  models  and
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remote  sensing  data  are  complementary  (Baret  &  Guyot,  1991;  Duchemin  et  al.  2008a;
Moulin et al., 1998).

The objective of this study was to evaluate a method to predict early yield based on the
assimilation of time series of Landsat images into a simple crop model (pySAFY).

2. Materials and Methods.

The study site was located at 33°34’44S latitude and 58°10’06W longitude in the south
west of Uruguay. The site has been managed with continuous no-till agriculture with standard
management practices, and a crop rotation that typically includes a winter cereal (wheat or
barley) and a summer crop (soybean or maize). The sowing date ranged from mid-May to
mid-June in all study sites during growing season 2012 and 2013.

Figure 1. Localization of experimental sites.

2.1. Methodology.

Multi-temporal remote sensing data were acquired by the Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) sensors to monitor the
growth conditions of wheat during winter growing season 2013. All images free or nearly free
of clouds covering the experimental sites were identified and downloaded from the USGS-
EROS  archive.  All  images  were  atmospheric  corrected  following  the  methodology
implemented in ENVI 5.1 and the mean surface reflectance values of red and NIR bands were
extracted to calculate vegetation indices.

Within the  site 13 sampling points were  selected, based on prior knowledge  of the
location of low and high yielding areas, in an attempt to have representative samples of the
different regions that could possibly be observed within that field. Each sampling point was
visited at approximately the same date of image acquisition.  At each sampling point total
above ground biomass samples were collected in three locations within a 10m distance from
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the center of the sampling point. Also in the same locations, leaf area index and fractional
ground cover was measured with a ceptometer (AccuPAR, Decagon Devices Inc.). The field
data were used to estimate the relationship between LAI and vegetation indices.

Three vegetation indices were calculated to predict leaf area index: NDVI,  WDRVI and
CI_green. The evolution of these indices between emergence to flowering were obtained for
each image according to equations 1, 2 and 3:

NDVI = ᵨNIR - ᵨRED /  ᵨNIR  + ᵨRED (1)
WDRVI = [(α+1)* NDVI + (α-1)]/[ (α-1)*NDVI + (α+1)] (2)
CI_green = ᵨNIR/ ᵨGreen (3)
where ᵨNIR is the reflectance of near infrared, ᵨRED is the reflectance of red, ᵨGreen is

reflectance of green, and the  value  of alpha  was fixed at 0.1 based on Gitelson (2004),.

Time series  course  of  LAI  for  each pixel  was  predicted  using  the  relationship  found
between each index and measurement data at the sampling point. We selected the index what
best predicted LAI, and this index was implemented along with the index-LAI function into
the model. The model was inverted against the image time series, calibrating 2 parameters
(nitrogen in leaf and initial above ground biomass). 

2.2.  PySAFY model description.

In this work we used a semi-empirical model based on SAFY model (Simple Algorithm
for Yield estimate), which was developed by Duchemin (2008). The model used a daily time
step with meteorological data (maximum air temperature, minimum air temperature and solar
radiation) obtained from a nearby meteorological station. 

 

The model simulated the time series of dry aerial mass using Monteith’s (1977) theory,
where the total dry biomass is the product of integrating incoming solar radiation and three
efficiency factors:  i)  photosynthetic  active  proportion  (PAR) of  total  solar  radiation  (εc),
which is the ratio between total  radiation and photosynthetic active radiation; ii)  the light
interception efficiency (εi),  which is  the portion of photosynthetic  active radiation that  is
absorbed; and effective light-use efficiency (ELUE), which is the ratio between produced dry
biomass and absorbed photosynthetic active radiation. Daily total above-ground dry matter
accumulation is calculated though the following equation:

DAM =  Rg * εc * εi * ELUE (2)

The light use efficiency is tightly associated with specific nitrogen content (SPLN) of the
leaf, which is allowed to change over time according to the nitrogen balance of the leaves. To
calculate daily ELUE we used the relationship proposed by Sinclair and Amir 1992 through
the following equation:

ELUE = 1.5 * (1 – exp ( -1.7 * SPLN -3 )) (3)

During vegetative growth total nitrogen incorporated into the plant was allocated between
leaves  and  stems  assuming  allometric  growth,  therefore  implying  constant  rates  of
proportional growth for each plant fraction. In the model green leaf area index is calculated
directly as a function of total above-ground dry matter with the following function:
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LAI = ((DAM (i) / DAM (i-1)) lallomb) * LAI (i-1) (4)

where DAM (i) and DAM (i-1) is dry aboveground matter of day i and i-1 respectively,
LAI (i-1) is leaf area index of day i-1 and lallomb is the allometric growth proportionality
parameter  associated  with  partitioning  between  leaves  and stems.  Parameter  lallomb was
adjusted with field data from crops growing in the same local conditions (lallomb=0.8747). 

Leaf senescence after flowering was the result of the nitrogen balance of the crop and the
remobilization  of  nitrogen  from  leaf  and  steams  to  the  growing  grains.  The  amount  of
nitrogen available for translocation to seeds was calculated as total nitrogen accumulated in
the leaves and stems on the end of vegetative growing discounting for the nitrogen which was
structural  and  not  available  for  translocation.  The  length  of  the  grain  filling  period  was
governed by the pool of nitrogen in the plant and the rate of nitrogen translocation. The model
considered to be the end of the grain filling period when LAI reached a value lower than 1.

The  destination  of  daily  production  of  dry  matter  (DAM)  depends  on  phenological
phases. For this reason to run the model it is necessary to know as an input parameter the
beginning  and  end  of  the  vegetative  growing  phase  (emergence  to  flowering).  The
phenological phases were not simulated by pySAFY, these data should be incorporated by the
user  as  inputs.  Final  yield  would  be  the  result  of  integrated  total  dry matter  production
throughout  the  growing  season  multiplied  by  a  harvest  index  factor  that  was  increasing
linearly over the grain filling period as proposed by Sinclair and Amir, 1991. The equation to
calculate grain dry matter is therefore: 

GDM = DAM * HI (5)

where 

HI = 0.011 * days_after_anthesis

2.3.  Assessment of model performance.

Estimated yield was compared with data of yield monitor at the test sites. Data collected
with the monitor were interpolated using ordinary kriging. The model accuracy for calibration
and validation was tested using RMSE (root mean square error) and Bias statistics: 

RMSE = √
∑
i=1

N

(Di)
2

N

Bias = ∑ Di /N  

where  Di  is  the  difference  between  Y –  Yi,  Yi  is  measurement  yield  for  simulation
scenario i, Y is corresponding value estimated for the model, and N is the total number of
simulation scenarios.
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3. Results and discussion.

3.1. Green LAI estimation. 

In previous works crop biophysical descriptors, such as LAI have been estimated from
vegetation indices to estimate the linking functions through empirical relationships. Equations
describing these relationships have different mathematical forms (linear, exponential, power,
inverse of exponential, etc). The empirical coefficient depends on field conditions, the indices
used and the crop type (Gitelson, 2004;  Haboudane et  al.,  2004; Matsushita and Tamura,
2002; Qi et al., 2000). 

Using data from sampling points on multiple fields during year 2013, NDVI, WDVRI and
CI_green vegetation indices  were estimated to  predict  LAI from spectral  data  of Landsat
images.  Orthogonal  regression  was  fitted  to  WDRVI  and  CI_green,  while  a  logarithmic
function was fitted to NDVI using JMP software (Figure 2).  

Figure 2. Relationship between vegetation indices and LAI during 2013 season in one
field nearby of study area.

WDRVI and CI_green did not show saturation for values of LAI above 3 in contrast to
NDVI,  but  deviations  from linearity and fit  error  was greater  in  WDRVI than CI_green.
Hence  we  select  CI_green  to  predict  LAI  in  model  runs.

Times series  of LAI were calculated using the above obtained empirical relationships
between CI and LAI. These maps of LAI were assimilated into the pySAFY model. In the
assimilation  process  two  parameters  were  optimized  using  Levenberg-Marquardt
optimization: initial above-ground biomass and specific leaf nitrogen content of the plant.

3.2.  Yield estimation. 

Running  the  model  in  forward  mode  over  Landsat  images  with  the  corresponding
estimated two parameter for each pixel, allowed the prediction of grain yield independently at
the pixel level. The spatial yield variability was correctly predicted with the model, moreover
average yield of all fields and average yield of different management zones (zones of different
potential into the field) was well predicted. In areas where Landsat 7 images have SLC gaps
(times series of LAI to predict parameters had fewer points), pySAFY model overestimated
yield. Otherwise estimation yield in different areas of the field was acceptable.
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Figure 3. Estimated yield with pySAFY and observed yield (kg ha-1) for Field 1 (a and c)
and for Field 2 (b and d). 

The  average  Bias  was  low  at  each  field  (Bias  =  75  and  -159  in  field  1  and  2
respectively).This was associated to areas where the model predicted yield accurately, and
areas where the estimation showed large bias which corresponded with Landsat 7 SLC gaps
or edges of the field.

Figure 4. Difference between yields estimated and observed (kg ha-1), a corresponding
with Field 1 and b Field 2.

Even  though  the  model  predicted  with  enough  accuracy  average  yield  and  spacial
variability,  micro  variability  was  not  estimated  correctly.  The  statistical  RMSE was  high
(1517 and 1206 in field 1 and 2 respectively). The model was more sensitive, and tended to
estimate lower yields in areas of poor crop development, where peak LAI over the growing
season was small. This derived in a tendency of the model to underestimate yield in areas that
were classified as lower potential areas.
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4. Conclusions

The method of assimilating remote sensing data of low resolution into the pySAFY model
allowed achieving enough accuracy to predict average yield and spacial variability for most
practical purposes.

The model allowed to detect and differentiate the general trend of yield within a field, and
to detect areas of high vs. low yield potential. However, the micro variability (pixel-to-pixel
variability) was not well estimated.

The model was sensitive to the increase or decrease in the number of images in the time
series  with  decreased  error  in  the  estimates  when  the  time  series  were  complete.  Better
accuracy would be achieved with higher spatial and temporal resolution of images.
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