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Abstract.  Mass movements are destructive natural phenomena that can lead to serious problems such as 

economic loss, damage to natural resources and even injuries and deaths. Efforts have been made to semi 

automate the interpretation of remote sensing data in order to improve efficiency and support specialists in 

recognizing mass movements’ scars. However, this approach is still incipient in Brazil. This study presents 

results of semiautomatic classification of mass movements’ scars that occurred in Nova Friburgo (Rio de Janeiro 

state, Brazil) in 2011 by using segmentation and applying data mining techniques. Two classifications were 

compared, from C4.5 and CART decision tree algorithms. Data mining techniques confirmed that mass 

movements have different spectral characteristics from other classes, allowing its detection from remote sensing 

images. The overall accuracy of  C4.5 algorithm was 62.6%, while CART was 66.4%. The errors occurred 

mainly in urban areas and in unpaved roads located at higher altitudes. Spectral digital elevation model (DEM) 

average, blue band and NDVI were the more appropriate attributes to distinguish mass movements patterns. This 

methodology offered an alternative, that still needs improvements, to produce data about statistics and spatial 

distribution of mass movements, providing information to be used, for instance, as parameters in susceptibility 

maps and models, assisting public policies focused on natural disasters. 

 

Keywords: decision tree, features, natural disasters 

 

1. Introduction 

Mass movements are destructive natural phenomena that can lead to serious problems such 

as economic loss, damage to natural resources and even injuries and deaths (Klose et al., 2014). 

In Brazil, there has been a significant increase in the frequency of natural disasters in the past 

few decades particularly associated with mass movements (UFSC, 2013). For some authors this 

increase is mainly due to climate change (increase in extreme events) and the growth of 

irregular settlements in urban areas (Robaina, 2008; Coelho Netto, 2011).  

Studies on mass movements are important because they provide an analysis of the 

associated risks. Usually the parameters for mass movements’ mapping are derived from 

historical data, field surveys and visual interpretation of satellite or aerial images. However, 

historical data are not always available or complete, intensive field research is impractical for 

studies on large scales, and visual analysis of spectral images can be a time consuming task 

(Escape et al., 2014), susceptible to analyst’s subjectivity. 

In this context, the attribute extraction and classification of regions where typical mass 

movements’ signals are present in orbital images is a challenging task. The difficulty associated 

with this procedure is mainly due to the great complexity of shape, size, texture, and other 

variables related to this hillslope process (Selby, 1993). Thus, efforts have been made to semi 

automatize the interpretation of remote sensing data in order to improve efficiency and support 

specialists in recognizing mass movements’ scars (Martha et al., 2012). However, this approach 

applied to mass movements’ scar detection is still incipient in Brazil.   

Data mining includes a set of techniques to extract useful information from a database with 

a large volume of data through intelligent methods. According to Körting et al. (2012), data 

mining techniques can increase the potential for analysis and applications of remote sensing 

data, once they present a great diversity of targets that are difficult to distinguish and, therefore, 
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require better techniques for extracting information. Hence, data mining allows the 

classification of images in a quicker way, compared to manual analysis.             

The model derived from data mining can be represented in several forms, such as decision 

trees, which consists on a tree structure which can be converted into classification rules (Han 

and Kamber, 2006). They have been widely used because of their intuitive representation, 

which makes the classification model easier to be interpreted. According to Quinlan (1993), the 

classification by decision trees has the advantage of owning non-parametric properties and is 

capable of classifying images with statistic distributions different from the Gaussian, including  

heterogeneous and noisier data, as outliers. 

Therefore, the aim of this study is to classify semi automatically scars of mass movements 

that occurred in the natural disaster of January 2011 in Nova Friburgo city (Rio de Janeiro state, 

Brazil), using image segmentation and  data mining techniques, identifying the best attributes 

that differentiate these areas from other types of land use and land cover classes. 

 

2. Material and Methods 

The study area has 41.25 km² and is located in the Roncador River basin, at the district of 

Córrego Dantas, Nova Friburgo-RJ, Brazil. This county is located in Rio de Janeiro’s mountain 

region, a geomorphological unit known as “Planalto Reverso da Região Serrana” (Dantas, 

2001), with steep mountainous terrain and altitude ranging from 400 to 2.300m. The steeper and 

higher terrains are covered with primary/preserved forests, totaling about 70% of its territory 

(CIDE, 2003). Due to such terrain settings, this geomorphological unit has a high susceptibility 

to erosion events such as mass movements (Dantas, 2001).  

As methodological procedures, it was used topography data from the TOPODATA project 

(Brasil, 2008), with 30m of spatial resolution. Also it was used the scene nº 2328825 from the 

RapidEye constellation sensor acquired in August 13
th

, 2011. This sensor has 5m of spatial 

resolution and 5 spectral bands, three of them in the visible area, one in near infrared (NIR) and 

one situated on the edge of the red (Red-edge). Due to the relative short period of time between 

the disaster of January 2011 in the Serrana region of Rio de Janeiro and the date of acquisition 

of the images, it was possible to classify the scars of mass movements, which were still 

apparent on the terrain. In addition, the Normalized Difference Vegetation Index (NDVI) was 

calculated to assist in the segmentation process, since the index contrasts mass wasting areas 

with other targets, especially vegetation. 

For validation purposes, the scars of mass movements appearing in the study area were 

vectorized in the software QGIS 2.8 by visual interpretation. As an ancillary data for 

recognizing of mass movements’ occurrences, historical high spatial resolution images from 

Google Earth software were analyzed.  

For data preprocessing, it was performed atmospheric correction of the RapidEye scene, 

using Quick Atmospheric Correction algorithm (QUAC) available at ENVI 5.0. Still in ENVI 

5.0, the following procedures were executed: 1) resizing the original image to an area of interest 

containing 1422 x 1167 pixels; 2) NDVI index calculation; and3) layer stack of RapidEye 

multispectral bands (1 to 5) with DEM (6) and NDVI (7), respectively.  

The process of classification was first performed in the software InterIMAGE 1.43 (Costa 

et al., 2008). Initially, a semantic network was built representing the classes expected to be 

found in the scene. In this paper, operational networks were created with no hierarchical 

relationship between classes, since the objective was to explore the semi-automatic 

classification with C4.5. Thus, each class (leaf node) was associated with the same parent node, 

without intermediate levels. As result, five classes were stipulated: mass movements, urban 

area; vegetation; field (comprising grass, agriculture and meadow areas) and rock. Using the 

Samples Editor tool, segmentation was performed in the images using the multiresolution 

Region Growing algorithm, proposed by Baatz and Schäpe (2000). This algorithm provides four 
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user-defined parameters: color, shape, scale factor and weight for each band used in the 

segmentation. Following the same methodology applied by Francisco and Almeida (2013) for 

visual choice of scale parameters, three consecutive segmentation levels were performed, 

reducing the scale factor in the performance of each new proceeding, creating a new level with the 

largest number of small-sized objects. Also, the weight given to the spectral bands and the NDVI 

layer were varied until an appropriate result was found to delimit the mass movement scars.  

After the segmentation, samples were randomly collected. We collected 100 samples of the 

mass movement class and 159 samples distributed among the other established classes. Then, 

attribute extraction was performed for each segment to be used in the classification. A total of  

51 attributes were created, from which, 43 were spectral parameters obtained for each spectral 

band used (except brightness that was obtained for the entire scene); 04 were operations of 

spectral bands, including NDVI and Simple Ratio Index (SR), and the other 04 were spatial 

attributes (Table 1). More information about the attributes generated can be obtained by Silva et 

al. (2005) and Körting (2012). 

 

Table 1. Extracted attributes of each segment in InterIMAGE. 
Attribute Type 

Mean (bands 1-6) Spectral 

Entropy (bands 1-6) Spectral 

Band Ratio (bands 1-6) Spectral 

Standard Deviation (bands 1-6) Spectral 

Amplitude (bands 1-6) Spectral 

Minimum pixel value (bands 1-6) Spectral 

Maximum pixel value (bands 1-6) Spectral 

Brightness Spectral 

NDVI = (NIR - Red) /(NIR+ Red) Operation 

(NIR – Red) Operation 

Simple Ratio = (NIR/ Red) Operation 

(NIR/Red-edge) Operation 

Shape Index Spatial 

Bounding Box área Spatial 

Perimeter Area Ratio Spatial 

Compacity Spatial 

 

The classification was made with TA_C45_Classifier top down algorithm, which uses the 

concept of the decision tree proposed by Quinlan (1993).  

The final classification results were generated in a vector data in the format shapefile (.shp), 

while the decision tree is generated in a text (.txt) file.  

In order to explore the attributes that better distinguish the mass movements’ class of other 

targets, it was still used the data mining tool WEKA 3.7, which incorporates a set of machine 

learning algorithms to enable the extraction of knowledge.  

The methodology developed in WEKA comprise the view of attributes generated in 

InterIMAGE through scatterplots, and a classification model generation for the CART decision 

tree (Classification and Regression Trees), proposed by Breiman et al. (1984). The database 

used in this work was the samples and their attributes generated in InterIMAGE and converted 

to the Attribute- Relation File Format (.ARFF). 

To evaluate the accuracy, the classified maps were crossed with the reference map, and 

from that, it was obtained the number of areas considered as true positive (TP), false negative 

(FN) and false positive (FP). TPs comprise the correctly mapped mass movements, whereas the 

other two identification categories represent two types of identification errors. FNs correspond 

to reference mass movements that have not been identified by the approach, and FPs are 

identified as mass movements objects which, again, have not been mapped in the reference 

inventory (Martha et al., 2012). Based on this relation, it was used three accuracy metrics: 
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Detection Percentage, Omission Error, Commission Error. Detection Percentage represents the 

percentage of mass movements which have been correctly identified by the automated 

approach. Commission Error and Omission Error describe separately the influence of the two 

possible identification errors FP and FN, respectively (Behling et al., 2014). 

 

3. Results and Discussion 

In segmentation, the most suitable scale parameter for visually delimiting mass movements 

areas was 60, with weight 0.5 assigned to the red, NIR bands and NDVI. For other bands, it was 

attributed the weight 0. It is noteworthy that, by providing a greater weight to these bands or 

including more bands in the segmentation process, the tendency of the algorithm is to over-

segment the image. Color and shape parameters, as mentioned above, were kept at the value of 

0.5. These parameters, although generating a larger number of segments for the same mass 

movement scar, were used to prevent that classes with similar spectral response (such as some 

field and urban areas) were included in the same segment as mass movement class. 

Figure 1 presents the decision tree obtained with each algorithm, C4.5 from InterIMAGE 

and SimpleCart from WEKA. 

Figure 1. Decision tree generated by the algorithm C4.5 (A) and by the algorithm CART (B). 

Highlighted, the attributes and rules used to classify mass movements of other classes.  

 

In the decision tree generated by the C4.5, the root node was the ratio of the band 

corresponding to the spectral mean of green band. This attribute was used to first separate 

vegetation class of other classes. The second attribute was the standard deviation of the red 

spectral band. This attribute discriminated classes with lower standard deviation, rock and field, 

from classes with higher standard deviations, such as mass movement, urban areas and field. 

Field class appeared in both branches, for having certain spectral range characterized by areas 

being covered with sparse vegetation and areas where the soil was more exposed.  

Urban areas and mass movements are also spectrally similar classes with high reflectance in 

the visible and NIR. To differentiate these three classes, the algorithm selected the spectral 

mean of DEM band. Lower values of spectral mean of DEM band discriminated field and urban 

classes from field and mass movements’ classes. This choice is justified by the fact that mass 

movements are situated in higher notable places than urban areas, for instance. However, the 

field class is located both in high and lower areas, appearing in both branches.  

Finally, in the last branch, remaining samples of the field class were differentiated of mass 

movements with the spectral mean blue band. The presence of herbaceous vegetation in certain 

field areas reduces its spectral response at wavelengths corresponding to blue, because of 

photosynthetic pigments in vegetation. On the other hand, bare soil, which are the areas of mass 

movements, has a comparatively higher response than the vegetation in this spectrum band. 

Thus, lower values of spectral mean of blue band were diagnosed as field while larger values 

were classified as mass movements. 
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For the tree generated by CART algorithm, the root node was the Red-Edge band standard 

deviation , whereas lower values discriminated the vegetation, field and rock classes, and higher 

values  designated the urban, field and mass movement classes. As in the C4.5, the CART 

algorithm also selected the spectral mean of DEM attribute to discriminate the urban class of 

mass movement and field classes, assigning lower values of this attribute to the urban class. 

Unlike other algorithm, to differentiate field of mass movements, CART selected NDVI, 

considering that higher values are equivalent to field class and lower values  are equivalent to 

mass movement class. Such behavior is expected, given that the vegetation under the field class 

gives higher values of NDVI for this class. 

Finally, areas classified as mass movements were extracted into a shapefile to be compared 

with the reference. The decision tree C4.5 resulted in a 285 ha area classified as mass 

movement while the CART algorithm resulted in an area of 311 ha. It is noticed that both 

classifications overrated the reference that had 260 ha of mass movement areas. Nevertheless, in 

strictly numerical terms, that is, aiming only the quantification of mass movement area and not 

its localization, it can be assumed that the C4.5 algorithm was reasonable, overestimating ~15 

ha in relation to the reference. Table 2 shows the results obtained with cross tabulation and 

accuracy evaluation. Similar results were found by Hölbling et al. (2015) that also had a 

classification with overestimated results in relation to the reference map. The authors classified 

mass movements resulting from two typhoons using the object-based approach in SPOT-5 

images in a16 km² area in north Taiwan.  

 
Table 2. Evaluation of C4.5 and CART algorithms in relation to the reference. 

Accuracy Assessment 
Algorithm 

C4.5 CART 

True positive (ha) 164 174 

False negative (ha) 98 88 

False positive (ha) 121 137 

Total classification area (ha) 285 311 

Detection percentage (%) 62.6 66.4 

Omission error (%) 37.4 33.6 

Comission error (%) 42.5 44.1 

  
 It is seen in Table 2 that both algorithms had a detection percentage of mass movement 

scars areas superior than 60%. Although the C4.5 algorithm has generated a total area value 

more similar to the reference, this algorithm had lesser detection percentage of mass movements 

(62,4%). In other words, comparing to CART algorithm, C4.5 generated a classification with 

larger spatial divergence in relation to the reference. The C4.5 algorithm had 37,4% of omission 

error and 42,5% of commission error. On the other hand, CART algorithm generated a 

detection percentage of 66,4%, an omission error of 33,6% and a commission error of 44,1%. 

Based in these values it can be inferred that CART algorithm is closer to the reference in 

relation to the areas classified as mass movements. 

Both algorithms generated more commission errors than the omission ones due to the 

overestimation of the area classified as mass movement. The algorithms inaccurately classified 

some urban areas and unpaved roads as mass movements. In general, unpaved roads on 

slopeareas are constructed in valley floors, once these areas have already been deforested and 

compacted in most cases. Valley floors are also regions where sediments flows often occurs; 

consequently, these areas are likely to form a “path” for mass movements.  Therefore, both the 

spectral response and the form and altitude of these roads resemble mass movement’s scars, 

which may justify the algorithm errors in these areas. 

In Figure 2 “A” and “B”, it can be noticed that both algorithms generated similar 

classifications. The main confusions were, as commented above, in urban areas, unpaved roads 
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and on valley floors. In the first zoom (1), it can be seen some mass movements scars with 

omission error, in other words, mass movement scars that were not detected by both algorithms.  

In addition, it is observed that the contrast between scars and vegetation is subtle. In the zoom 

frame number two; there are some areas with a good degree of accuracy in the classification. In 

the third zoom frame, one can see areas with commission errors which correspond to urban 

areas and to unpaved roads that were mistaken for mass movements. 

 

 

 
Figure 2. Result of the classification of mass movements with the decision tree C4.5 (A) and 

CART (B) on the composition of R3G2B1 RapidEye image. 

 

 In Figure 2 it can be seem that both algorithms generated similar results in detecting mass 

movement scars. This similarity may be related to the fact that both algorithms used the 

attribute of spectral DEM mean to differentiate urban and mass movements’ areas. A 

A 

B 
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hypothesis to explain the commission errors in urban areas is that some of these areas are 

located in higher altitudes (Figure 2, zoom 3). Also it can be noticed that some omission 

errors occurred at lower altitudes (Figure 2, zoom 1), that is, in places near the road and 

urbanized areas. 

Still, in the studied image area, there are anthropic features such as cut slopes. These 

features are likely to generate confusion by the algorithm, once they have similar 

characteristics with mass movement scars: bare soil in higher altitudes (Figure 2, zoom 3). 

Another point to mention is that there was an overestimation by the algorithms in fluvio-

colluvial plains and in riverbeds. Such environments are regions of transport and deposition of 

mass movement sediments. Due the complexity intrinsic to the mass movement process, as 

previously mentioned, mapping these features is a complex task especially because of the 

uncertainty related with what is in fact sediment or deposit of mass movements and what 

could be materials previously existent in the local. 

 Lastly, it is worth mentioning possible errors present in the reference map, once a field 

trip to collect data was not attempted. Some possible sources of errors in the reference map 

are: 1) scale problems during the mapping process, causing errors in the delimitation of the 

mass movements’ scars boarders; 2) possible errors of omission or commission derived from 

the visual interpretation process, which is subjective to the understanding of the interpreter; 3) 

the interpreter knowledge in relation to  the surrounding features (that might help in the 

decision) combined with a time series of images available at Google Earth taken closer to the 

2011 disaster and with a better spatial resolution. All these additional data and the own 

interpreter’s intelligence are not available as algorithms attributes, increasing the possibilities 

of classification errors by the algorithms. 

 

4. Conclusions 

 Data mining techniques pointed that mass movements have different spectral and spatial 

characteristics from other classes, allowing its detection from an orbital image. Although 

several  attributes were computed from the samples, the decision tree algorithms only used six 

of them to make the classification of mass movement areas. As a result, data mining assists 

the analyst on the choice of attributes to differentiate classes. The manual analysis of each 

attribute would take time and could preclude some applications. Furthermore, the manual 

construction of decision thresholds would be subjected to the analyst and then it could be 

more difficult to replicate these methods in other study areas. 

In this application, the attribute of spectral DEM average expressively contributed to mass 

movement differentiation from the urban area class, once both classes are spectrally similar in 

the visible and NIR. In addition, the spectral average of the blue band and NDVI helped the 

differentiation between mass movements and the field class, that also have some spectral 

similarity. Both algorithms had more than 60% accuracy. Larger commission errors were 

associated with urban area and unpaved roads classes situated at higher altitudes. 

The decision tree offers the advantage of allowing the user to visualize the classification 

process. Also, its improvement could generate maps with better accuracy according to each 

area. Therefore, this methodology offered an alternative, that still can be improved, to produce 

data about statistics and spatial distributions of mass movements. It may provide information 

to be used, for instance, as parameters in susceptibility maps and models, assisting the 

management of public policies focused on natural disasters. 
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