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ABSTRACT 

 

Spectral Indices (SI) are widely used for remote sensing 
application because they enhance targeted features in 

optical images through the algebraic combination of 

spectral bands. There is a large variety of SI, in which 

the performance varies depending on the user's 

application. Considering the different emphases that 

spectral indices may offer, here we present a test-case 

based on the combination of 10 SI in a three channels 

remote sensing image (Red; Green; Blue - RGB) aiming 

to highlight burned areas from other targets such as 

vegetation and water. This process generated 120 

possible combinations without repetition. With spatial 

resolution of 30m, the proposed method was able to 
achieve an accuracy between 0,21 and 0.86, according 

to Cohen's Kappa coefficient. The two groups of indices 

MIRBI, NBR2, EVI, MNDWI and CSI; and BAI, NBR 

and NDVI were the most inaccurate and accurate 

indices, respectively, identified for the study site. 

 

Key words — Rainforest, Landsat-8, Spectral 

Index, Forest Fires, Burnt Area. 

 

1. INTRODUCTION 

 
Fire is one of the main threats faced by Amazonia, the 

largest rainforest worldwide [1]. Although detecting 

Burned Areas (BA) is essential in order to monitoring 

fire risks, impacts and management, generating accurate 

BA products for Amazonia is difficult due to different 

factors, such as cloud coverage, presence of cloud 

shadows, forest seasonality, variability and temporal 

development of the spectral characteristics of the BA, 

imagery temporal resolution and products accuracy [2, 

3, 4]. Among the available remote sensing approaches 

for BA detection, the MCD64A1 product from MODIS 

sensor [5] presents daily to two-days temporal 
resolution. However, its spatial resolution of 500m is 

not suitable for fine-scale analysis of the spatial extent 

of BA. Therefore, for such application a higher spatial 

resolution data would be recommended, for instance at 

medium spatial resolution [3], which ranges from 10 to 

50m [6]. 

Within the context of medium resolution data, 

different authors reported the importance of the Linear 

Spectral Mixture Model (LSMM), which can be applied 

in any spatial resolution data [7], [8]. The LSMM 

considers that the value of a pixel in an image 
represents the linear mixture of the different elements in 

the pixel. As such, the model is related to the spectral 

response of pure pixels, called endmembers [9]. The 

LSMM is commonly applied using as input surface 

reflectance data in the blue, green, red, near-infrared 

and shortwave infrared, to calculate the fractions of soil, 

vegetation and shade endmembers within the pixel. For 

BA detection, however, most studies focus exclusively 

on the information provided by the shade fraction. In 

this fraction, not only BA but also other targets with 

similar spectral response may be enhanced, e.g. cloud 

shadow and water [10]. Therefore, for separation of BA 
from other targets there is the need of applying a 

filtering on the shade fraction image to eliminate the 

confounding features [3]. 

Although the LSMM presents high accuracy, the 

procedure for achieving the final burned area map is not 

yet fully automated, which may be a problem 

considering the need for processing the currently 

massive data volume [4, 7, 8]. 

An alternative to the application of the LSMM on 

medium spatial resolution data is the use of Spectral 

Indices (SI), which enhance some useful information 
through the algebraic combination of spectral bands. 

These SI are widely used and already consolidated in 

the literature [11]. The SI has a wide variety of 

formulations and each index has a better performance 

according to the user's application [12]. However, SIs 

are normally generic and do not take into account local 

features. For instance, SI for BA detection may enhance 

not only BA but also shadows and water targets. For 

this reason, the use of SI often requires a filtering step. 

Considering that there is a lack of methods for 

automatically detect BA using medium resolution 

satellite images in the Brazilian Amazonia, we aimed in 
this study to present a test-case based on the 

combination of 10 SI in remote sensing images with 

three channels composition (Red; Green; Blue - RGB) 

in order to highlight burned areas from other targets 

such as vegetation and water. This process generated 

120 possible combinations without repetition for 

medium spatial resolution data. The five most 

inaccurate and accurate indices were analyzed. 
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2. SIC-BA: SPECTRAL INDICES COMBINATION 

FOR BURNED AREA DETECTION 

 

This test-case was performed in a Landsat-8/OLI scene 

(path/row 221/064, date: 08/17/2014), with 30m of 
spatial resolution. The study area represents the 

transition zone between the Amazonia and the Brazilian 

Savanna (Cerrado) in the Maranhão state. 

First, we selected 10 burn, vegetation and water 

indices (Table 1) and we normalized all indices between 

[-1;+1]. Aiming to highlight BA from other targets, 

burn indices were converted to positive values, while 

vegetation and water indices were converted to negative 

values. In such a way, BA was visually brighter than 

other targets in RGB composition. 

The SI combination process was performed using a 

simple three channels (RGB) remote sensing image 
composition, and generated 120 possible combinations. 

The order of the SI in the composition was not relevant, 

therefore, the same indices in different combinations 

were not considered. After the generation of the 120 

RBG compositions, we classified and filtered the results 

(Subsection 2.1.). Next, we assessed their accuracy 

according to a reference map, which was performed by 

a high skilled expert, as proposed by [7] (Subsection 

2.2.). Finally, we analyzed the most accurate SIC-BA 

aiming to identify possible rules and patterns. 

 

2.1. Classification and Filtering Process 

 

The clustering process was performed through the 

unsupervised algorithm K-means (K=8), according to 

empirical analysis, followed by a classification step. 

The two filtering processes were: (i) mode, and (ii) 

cloud shadow and water filtering. Mode filter was 

applied, with a windows size of 3, considering the 

necessity to remove noise along the image. Filtering 

cloud shadow and water was required due to its similar 

spectral response with BA [4] through Fmask algorithm 

[13], [14]. 
It is also important to highlight that all the data 

processing of this study was executed on a computer 

with Intel Core i7-2600 processor and 16 GB RAM in 

Python programming language. It took about 60 hours 

to process the data, which corresponds a total of 2.5 

days of non-stopping data processing. 

 

2.2. Accuracy Assessment 

 

The accuracy assessment performed through a Cohen's 

Kappa coefficient [25] and a reference map comparison. 
This mapping was generated through filtering and 

manual edition steps on a shade fraction from LSMM 

by means of K-means (K=7), defined through empirical 

analysis. This phase was performed by a high skilled 

expert, as proposed by [7]. 

 

 

 

 

3. SIC-BA ANALYSIS 

 

The application of the 120 RBG compositions in the 

study area resulted in a kappa ranging from 0.21 to 

0.86, R:NBR2/G:SAVI/B:EVI (Table 2) and 
R:BAI/G:SR/B:NDVI, respectively (Table 3). The 

compositions with the lowest accuracy included mainly 

MIRBI, NBR2, EVI, MNDWI and CSI indices, which 

may indicate that blue (0.45 - 0.51 μm) and green (0.53 

- 0.59 μm) reflectance band are not relevant for BA 

detection. 

Kappa coefficients of the 5 most accurate 

compositions in study area were relatively high, 

between 0.85 and 0.86. This composition was 

R:BAI/G:SR/B:NDVI (Figure 1). Besides that, the most 

decisive indices were BAI and NDVI, with red (0.64 - 

0.67 μm) and near-infrared (0.85 - 0.88 μm) bands, 
indicating the importance of such indices and bands for 

BA detection. Finally, SR was identified in both groups 

of indices, the most inaccurate and accurate indices, and 

no final conclusion was possible for this index. 

 

 
 

Figure 1. Most accurate SIC-BA in the study area 

(BAI/SR/NDVI). (A) Subset of study area 1, where white 

regions represent burned areas. (B) Fig. 2A + BA 

according to the reference map. 

 

4. CONCLUSIONS 

 

The SI combination was developed considering the 

different targets that spectral indices may enhance. For 

BA, the combination accuracy ranged from 0.21 to 0.86 

and the most suitable combinations included the indices 

BAI and NDVI. Neither the vegetation indices SAVI 

and EVI nor the water index MNDWI were important 
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Table 1. Spectral indices used in the test-case structure. 

 

Spectral Indices Initials Formula References Index Type 

Simple Ratio SR 
ρNIR

ρRed
 [15] Vegetation 

Normalized 

Difference 

Vegetation Index 

NDVI 
ρNIR − ρRed

ρNIR + ρRed
 [16] Vegetation 

Soil Adjusted 

Vegetation Index 
SAVI 

(1 + 𝐿)(ρNIR − ρRed)

(ρNIR +  ρRed + L)
 [17] Vegetation 

Mid-Infrared Burn 

Index 
MIRBI 10 ρLSWIR − 9.8 ρSWIR + 2 [18] Burned 

Enhanced Vegetation 

Index 
EVI 

G(ρNIR − ρRed)

(L + ρNIR +  C₁ρRed − C₂ρB)
 [19] Vegetation 

Burned Area Index BAI 
1

(0.1 − ρRed)2 + (0.06 − ρNIR)
 [20] Burned 

Normalized Burn 

Ratio 
NBR 

ρNIR − ρSWIR

ρNIR +  ρSWIR
 [21] Burned 

Normalized Burn 

Ratio 2 
NBR2 

ρSWIR − ρLSWIR

ρSWIR +  ρLSWIR
 [22] Burned 

Modified Normalized 

Difference Water 

Index 

MNDWI 
ρG − ρSWIR

ρG +  ρSWIR
 [23] Water 

Char Soil Index CSI 
ρNIR

ρLSWIR
 [24] Burned 

ρB = blue reflectance band; ρG = green reflectance band; ρRed =  red reflectance band; ρNIR =  near-infrared reflectance 

band; ρSWIR = short wavelength infrared band; ρLSWIR = long short wavelength infrared band ; L (SAVI) =  constant 

value of soil adjustment (0.5); L (EVI) =  constant value (1.0); G =  constant value (2.5); C1 =  constant value (6.0);  

C2 =  constant value (7.5) 

 

Table 2. Comparison of most inaccurate compositions in 

the study area. 

Compositions 
Kappa 

Coefficient 

MIRBI NBR2 EVI 0.46 

NBR2 SR CSI 0.45 

MIRBI NBR2 SR 0.37 

NBR2 EVI CSI 0.27 

NBR2 SAVI EVI 0.21 

 

Table 3. Comparison of most accurate compositions in 

the study area. 

Compositions 
Kappa 

Coefficient 

BAI SR NDVI 0.86 

BAI NDVI CSI 0.86 

NBR BAI SR 0.86 

NBR BAI CSI 0.85 

NBR BAI NDVI 0.85 

 
Figure 2. Most accurate SIC-BA in the study area 2 

(MIRBI/NBR/BAI). (A) Subset of study area 1, where white 

regions represent burned areas. (B) Fig. 3A + BA according to 

the reference map. 
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for BA detection in study area. In such a way, we indicate as 

future researches a new round of test-case with the 

substitution of them to others BA indices. 

Furthermore, it is important to highlight that due to 

Amazonia heterogeneity, it is necessary to analyze the 
performance of the most impressive combinations in others 

areas, such as for consolidated agriculture and pasture 

regions, in order to identify the most indication combination 

of SI for BA detection in Brazilian Amazonia. 
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