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ABSTRACT 

 

Forest degradation by selective logging is considered one of the 

main causes of biodiversity loss and CO2 emissions in tropical 

regions. However, persistent cloud cover limits the detection of 

selective logging using optical satellite systems in the Brazilian 

Amazon. We develop a novel approach to detect selective 

logging using one-year time-series (TS) from Sentinel-1 

RADAR data (C-band), based on state-of-art cloud computing 

using Google Earth Engine. The method consists of two 

temporal TS reductions. The first reduces the TS for the median 

monthly record while the second one computes annual statistics 

like mean, standard deviation, and amplitude. The result is a 

composite band used for classifying the annual TS through the 

application of a machine-learning algorithm (CART). 

Classification showed 69% overall accuracy within five 

classes; however, the misclassification of the degradation class 

was 54%. The classification accuracy has increased to 79% 

with the removal of the regrowth class, with 74% of the 

degradation correctly classified. 

 

Key words — SAR system, machine-learning, cloud-

computing, segmentation, regression trees. 

 

1. INTRODUCTION 

 

Forest degradation by selective logging is considered one of the 

main causes of biodiversity loss and CO2 emissions in tropical 

regions [1, 2]. The estimates of greenhouse gas emissions 

(GHG) from forest degradation are around 30% of the total 

GHG emission from land use and land cover change (LULCC) 

across tropical countries [2]. Furthermore, forest under 

selective logging stores 40% less carbon and has, on average, 

13% less species richness than undisturbed forests [3, 4]. 

However, the uncertainties related to the mapping and 

monitoring process are still unknown. The main limitation is 

the cloud cover persistency in tropical regions, which reduces 

the availability of cloud-free images from optical satellite 

systems and, consequently, decreases the detection accuracy of 

small spatiotemporal canopy disturbances [5]. 

In this sense, Synthetic Aperture Radar (SAR) systems 

such as a Sentinel-1, which operates on microwaves (C-band, 

5.4 cm), are almost insensitive to clouds and capture images 

day and night. Moreover, cloud-free dataset in combination 

with the high revisit time (12 days on the Equator) allows for 

detection and monitoring of selective logging throughout the 

year, and thus not only in the dry season. Currently, illegal 

logging has been reported during the rainy season in order to 

avoid detection with optical sensors [6].  

The main goal of the study is to assess Sentinel-1 time-

series for detection of forest degradation by selective logging. 

The novel approach uses a state-of-art Google Earth Engine 

(GEE) cloud computing to handle the processing of large 

image data sets [7]. This is the first approximation of an almost 

fully automated algorithm to detect selective logging in the 

Brazilian Amazon, Mato Grosso (MT) State, using SAR data.          

 

2. MATERIAL AND METHODS 

 

The study area comprises an area of 2,662.45 km² and is 

located on both sides of BR-163 Highway, between the 

municipalities of Sinop and Itaúba. The area is located in the 

central-northern part of MT, within the Brazilian Amazon 

(Figure 1).  

 

 
Figure 1. Location of the study area within Mato Grosso State. 

 

The study area encompasses not only municipalities with 

high legal timber production, but also areas with the high 

occurrence of illegal logging [8]. The vegetation is 

predominately Dense Ombrophylous Forest that includes 

commercial timber such as Dinizia excelsea Ducke, Hymenaea 

courbaril L., and Bagassa guianensis Aubl. [9]. Climate is 

humid tropical with very distinct dry and wet seasons that 
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extend from April through October, and from November 

through March, respectively. The average annual precipitation 

and temperature is 2000 mm and 26 °C, respectively [9]. 

 

2.1. Sentinel-1 time-series (TS) data  

 

The collection of Sentinel-1 data on GEE Application 

Programming Interface (API) provides S-1 data from a dual-

polarization C-band (VH and VV); it is processed in Sentinel-1 

Toolbox to generate a TS composite of Ground Range 

Detected (GRD) images at 10 m nominal resolution. The 

Toolbox applies thermal noise removal, radiometric calibration, 

and terrain-correction to produce a calibrated orthorectified 

product [10]. In order to standardize the TS composite, only 

Interferometric Wide (IW) swath mode data from a descending 

orbit pass were collected. The revisit time for both S-1 satellites 

(A and B) is 6 days; the collection is updated weekly on GEE 

API. However, only S-1 A is available over the study area, 

reducing the revisiting time to 12 days. In consequence, the 

annual S-1 TS composite has about 30 images [7].   

The backscattering coefficient (sigma naught σº) was 

converted to gamma naught γ° by applying the cosine of the 

average incidence angle θ at each resolution cell in both 

polarizations (VH and VV). This procedure performs the 

translation of a resolution cell perpendicular to a radar line-of-

sight and smoothes topographic effects on the image [11]. 

Furthermore, we create an index called RGI (Radar Gap Index) 

which consists in the normalized difference between VV and 

VH, as RGI = (VV-VH)/(VV+VH). The RGI highlights the 

relative importance of canopy gaps in the total backscattering. 

The higher the value of VV-VH is the higher is the single-

bounce contribution of bare soil from canopy gaps. The values 

are higher in open gaps and are sensitive to plant-soil moisture 

[12]. 

We chose an interval of one year, from June 2017 to July 

2018, totaling an initial TS composite of 30 S-1 scenes. The TS 

was reduced to a median monthly record to avoid the influence 

of external factors such as rainfall, calibration and incidence 

angle at acquisition time. The resulting S-1 TS has 12 scenes 

with monthly smoothed lines. A boxcar filter (5x5 pixels size) 

was applied to the monthly S-1 TS for de-speckling.  

A forest mask was applied to analyze only forest areas. 

This procedure is needed to avoid inserting unnecessary classes 

in the analysis, such as pastures, urban, and water, which 

inevitably add errors to the classification. For the forest mask, 

Hansen et al. [8] tree cover data greater than 90% was 

considered as forest in the year 2000; moreover, non-forest 

pixels were removed from the analysis.  

 

2.2. Classification of Sentinel-1 TS data 

 

The collection of training and testing data was done visually 

using an independent set of Sentinel-2 imagery data with 10 m 

spatial resolution (three visible and one near infra-red bands). A 

cloud quality filter was applied within GEE to select two cloud-

free scenes: one on July 16, 2017 and other on July 26, 2018. 

The July 2017 image was segmented using the multi-resolution 

segmentation algorithm of eCognition® [13], with the defined 

parameters of: scale 100 m, shape 0.2, and compactness 0.3. As 

RADAR data has high local variability, the objective of image 

segmentation was to aggregate homogeneous regions to 

classify the TS by Geographic Object Based Image Analysis 

(GEOBIA). 

Using both sets plus image difference, the segments were 

labeled in five classes through GEE: namely forest, agriculture, 

forest degradation, deforestation, and regrowth. A total of 198 

collected samples were then labeled in the five classes 

previously defined. Finally, samples were divided in 60% for 

training and 40% for testing.  

Twelve images from one year S1 TS were reduced using 

spatial and temporal statistics, resulting in a single image with 

15 bands. The temporal statistics of the three original bands VH 

gamma, VV gamma, and RGI were mean (3 bands), standard 

deviation (3 bands), min and max (6 bands), and amplitude (3 

bands). In addition, the spatial statistics were computed by 

changing the scale, i.e., the spatial resolution. The classification 

was performed by the Classification Algorithm and Regression 

Trees (CART) using the training data set [14]. The 

performance of classification algorithm was evaluated through 

the confusion matrix using the testing data set [15].        

 

3. RESULTS 

 

In general, the cross-polarized (VH) channel had the highest 

accuracy for separating the main classes (Figure 2), followed 

by the vertical co-polarized (VV) channel and the radar index 

(RGI).  

 

 
Figure 2. Monthly composite of the Sentinel-1 time-series 

depicting the annual behavior of the five classes at the VH channel 

TS. 

 

The forest class, defined as low-disturbance forest, has a 

consistently high backscattering coefficient and a low standard 

deviation (γ° = -11.1±0.3 dB) throughout the year, due to signal 

saturation of the C-band on canopies with high biomass. The 

variation of γ° during the rainy season (Nov-Feb) occurs as a 

consequence of the increased plant moisture. The radar signal is 

sensitive to water content, reducing the power signal by 
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decreasing the dielectric constant during the dry season [16]. 

The degradation class, corresponding to selectively logged 

forests, showed a non-uniform annual behavior with a slight 

low backscattering and an intermediate standard deviation (γ° = 

-12±0.6 dB) compared to low-disturbed forest. The extraction 

of timber reduces the average backscatter somewhat, allowing 

the penetration of the wavelength in the canopy gaps, which, in 

turn, decreases the portion of volumetric scattering from VH 

channel. 

The agriculture class shows a typical seasonal crop cycle, 

which extends from the end of the dry season (Aug-Oct) to the 

middle of the rainy season (Apr-Jun). The annual cropping 

phenology is characterized by low backscattering during the 

sowing period (Oct-Nov) due to the low roughness of soil and 

specular scattering backward to the RADAR line of sight, and 

to high backscattering before harvesting (Apr-May). This 

behavior is similarly observed on optical indices and is 

characterized by a high annual standard deviation γ°sd = 1.1 dB. 

Deforestation is characterized by the strong reduction of the 

backscattering value related to an abrupt increase of the soil 

contribution and the decrease of the volumetric scattering. 

Because deforestation events often occur at the end of the dry 

season, the reduction of γ° values is most common at this 

period (Sep-Oct). Finally, the annual behavior of regrowth class 

varies in parallel to the agriculture class, as young secondary 

forests have high seasonality due to the variations in soil-plant 

moisture. However, seasonality in regrowth is less pronounced 

than in the agriculture class, in consequence it has the lowest 

annual standard deviation γ°sd = 0.86 dB.   

 

3.2. Classification results 

 

Due to fast cloud-computing on GEE, the user can change 

some parameters of classification and quickly evaluate the 

performance of the algorithm. In this context, we have tested 

the forest degradation analysis on six spatial scales: 10 m 

(original data), 30 m, 100 m, 150 m, 200 m, 300 m and 500 m. 

The overall accuracy of classification was between 58% at 10 

m scale (pixel-by-pixel) and 48% at 500 m scale, with the best 

result achieved with the 200 m scale (69%). The spatial scale of 

200 m was selected as a trade-off between the speckle reducing 

and spatial smoothing and the scale that each class event occurs 

in nature. 

We also tested the classification using separate bands (VH, 

VV, or RGI) in order to evaluate the strength of a single band 

regarding the algorithm performance. The best result was 

received using only VH-gamma (67%), followed by VV-

gamma (59%), and RGI (56%). Changing band numbers from 

the temporal statistics, the overall accuracy using only the 

annual mean of VH-gamma was with 69%, in the same 

magnitude as if using all 15 bands (mean, standard deviation, 

min-max, and amplitude). According to our analysis, it seems 

there is a covariance among of prediction variables, leading to 

the conclusion that the number of temporal reductions bands 

should be decreased as well as the polarizations. However, the 

misclassification of the degradation was lower when all 15-

bands were used together although the overall accuracy was the 

same; so we kept all polarization bands and temporal 

reductions.     

The performance of the classification is shown in the confusion 

matrix (Table 1). The overall accuracy of classification in 

2017/2018 was 69%, using the test data set for validation. The 

forest degradation class showed a higher producer accuracy 

(67%), then user accuracy (43%). The low user accuracy was 

due to misclassification amongst all other classes. The omission 

error varied from 3% to 14% for agriculture and deforestation 

classes, respectively. The commission error was at 11% for the 

forest class and at 18% for the agriculture class.   
 

Table 1. Confusion Matrix for CART. 

Classes For. Agr. Deg. Def. Reg. 
User 

Accuracy 

For. 135 0 3 1 4 0.94 

Agr 22 54 2 2 4 0.64 

Deg. 11 18 43 14 14 0.43 

Def. 4 0 9 64 0 0.83 

Reg.  9 2 7 10 4 0.13 

Producer 

Accuracy 
0.75 0.73 0.67 0.70 0.15 0.688 

 

As expected, the forest class showed the best classification 

result of producers and user accuracy, 75% and 94%, 

respectively. The regrowth class showed the worst results of 

15% and 13%, respectively.  

Considering the low accuracy of regrowth and the small 

number of training and test data sets, we exclude this class from 

the analysis. The overall accuracy of the classification with four 

classes has augmented by 15%, with a substantial improvement 

of the producer and user accuracy of the forest degradation 

class with 76% and 71%, respectively. The classification map 

is shown in Figure 3. 

 

4. DISCUSSION 

 

S-1 TS has a huge potential for forest degradation monitoring 

due to selective logging in such persistent cloud-cover 

environments as the Brazilian Tropical forests [16]. However, 

some issues have arisen from our analysis: 1) Reducing the 

number of bands in the one-year time-series analysis, such as 

mean and standard deviation, leads to a loss of information in 

the near-real time detection, inasmuch as it is feasible through 

this approach to identify forest degradation, but not the date of 

occurrence [16]; 2) Inherent speckle noise of RADAR 

precludes an application of the technique pixel by pixel, which 

makes an object-based (segmentation) approach necessary. A 

simple spatial aggregation is not sufficient for circumventing 

this problem, since it tends to homogenize distinct classes. In 

consequence, the algorithm cannot be fully automated yet. 

In the future, other classifiers could be tested, as Neural 

Network, Support Vector Machine, or Random Forest, which 

are reported to produce high accuracy for TS classification 

[17]. In addition, we expect to implement the TS analysis over 

a longer time-series in the future, similar to LandTrendr [16], 
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which could detect better the monthly rupture of the TS, and 

would including synergistic data analysis with Sentinel-2 

imagery. 

 

 
Figure 3. Classification result with 4 classes using CART. 

 

5. CONCLUSIONS 

 

The overall classification with 5 land cover classes was at 69%, 

but misclassification of forest degradation with other classes 

was at 67%. The VH-gamma was the best predictor variable, 

followed by VV-gamma and Radar Gap Index (RGI). The 

overall accuracy has improved from 69% to 79% with the 

removal of the vegetation regrowth class from the analysis. The 

producer and user accuracy of the forest degradation class with 

4 classes was at 71% and 86%, respectively. Currently, this 

novel approach method only detects forest degradation or 

deforestation a few months after the event. A refined method 

will enable the monitoring of forest degradation in near-real 

time once in the future. The GEE code script is: 

https://code.earthengine.google.com/cd0443453e6156b152847

b94d16880b4.  
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