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ABSTRACT

Automatic mapping of planted and natural forests using
satellite images is a challenging task due to spectral
similarity issues. In this work, we assessed the use of
Convolutional Neural Networks (CNNs) to discriminate
between natural forest areas and eucalyptus plantations in a
Landsat-TM scene. First, we produced training and testing
datasets with data from the MapBiomas project. Then, CNNs
were trained with input patches of different sizes (5×5, 7×7,
9 × 9 and 11 × 11 pixels) to evaluate the influence of patch
dimension in the classification accuracy. For comparison,
pixel-wise and patch-classification were performed using
the Random Forest (RF) algorithm. The best results were
obtained using CNNs with 5 × 5 patches. In this scenario,
the F-score was of 97.64% for natural forests and 95.49%
for eucalyptus plantations. The classification errors reached
9.06% using RF and did not exceed 3% with CNNs.
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1. INTRODUCTION

Since 1990, the global extent of planted forests increased 65%
due to the growing demand for forest and timber products
[1]. In Brazil, the area of planted forests increased some 47
million ha from 1985 to 2017 [2]. The most planted woody
genus in Brazil is Eucalyptus spp., occupying an area of about
5.7 million ha [3]. At the same time, natural forests are
facing deforestation and degradation, with the tropics alone
accounting for 32% of the global forest loss from 2000 to
2012 [4].

Remote sensing has been widely used to map and monitor
forested areas at a wide range of temporal and spatial scales.
Particularly Landsat images have been successfully employed
to produce national and regional forest cover maps. However,
most of the mapping initiatives do not discriminate between
natural and plantation forest areas [4] or, if they do, a
high degree of misclassification is present [2]. Mapping
tree plantations and natural forests in satellite images, such
as those from Landsat, is challenging due to their spectral
similarity.

In areas of old occupation of Brazil, in which agricultural
or urban fields replaced the original forest cover, natural
forests are characterized by small (< 100 ha) and
disconnected fragments located mainly along river beds
[5]. Conversely, eucalyptus plantations are usually large
areas (> 500 ha), forming homogeneous and monospecific

patches. Both natural forest areas and eucalyptus plantations
have distinct spatial distribution patterns. Thus, machine
learning methods that take into account the spatial context can
improve discrimination between these classes. Convolutional
Neural Networks (CNNs), a type of deep learning method,
use spatial-contextual information for classification and has
been producing excellent results for remote sensing image
classification.

In this work, we assessed CNNs to discriminate between
natural forest areas and eucalyptus plantations in a Landsat
Thematic Mapper (TM) scene. Training and testing datasets
were produced by using data from the MapBiomas project [2].
We ran CNNs with different patch configurations to evaluate
the influence of patch size in the classification accuracy. For
comparison purposes, we also performed patch-classification
using the Random Forest (RF) algorithm.

The remainder of this paper is organized as follows:
Section 2 presents the study area and the forest cover data.
Section 3 describes the methods adopted as well as the
experimental set-up. Section 4 discuss the experimental
results and finally, Section 5 presents the conclusions.

2. MATERIAL

2.1. Study site and remote sensing data

For this study, we selected the Landsat-TM worldwide
reference system 2 (WRS2) 220/76 scene (Figure 1a) that was
acquired on 14 April 2006 over the center-south portion of
the São Paulo state, southeastern Brazil. The region shows
highly diverse land use patterns characterized by silvicultural
(eucalyptus plantations) and agricultural (mainly sugarcane)
fields. Natural forest areas are sparsely distributed in small
(< 100 ha) fragments that are primarily in riparian areas
[6]. The Landsat-TM image was retrieved from the global
visualization viewer (GloVis) (https://glovis.usgs.gov/) in
surface reflectance (L2 level).

2.2. Forest cover data

Aiming to assess CNNs for mapping eucalyptus plantations
and natural forest areas, we used the land cover dataset
produced by the MapBiomas project. MapBiomas employs
a pixel-wise classification scheme, based on the U.S
Geological Survey Landsat Global Archive, to regularly
map more than 20 land use/cover classes over the Brazilian
territory. More details about the project can be found at
http://mapbiomas.org. We used the available 3.0 collection
and selected the class IDs that represented natural forest areas
(IDs=1 to 5) and eucalyptus plantations (ID=9). The pixels 2650



(a) (b) 

Figure 1: (a) false color composition (RGB 453) of the Landsat-TM image used in this work. (b) forest cover map showing natural
forests and eucalyptus plantations retrieved from the MapBiomas project. Training and testing areas are depicted in blue and red,

respectively.

from the other classes were set to zero and assigned to a class
called background (Figure 1b).

3. METHODS

CNNs are one of the most used deep learning methods for
remote sensing image classification and have been achieving
outstanding performance levels [7]. CNNs constitute a
class of deep Artificial Neural Network which rely on
local linear operations (convolutions) followed by non-linear
transformations, creating different representations of the
input data.

The convolutional layers act as feature extractors from the
input images. These layers are composed of a set of filters that
encode lower-level features (from the first layers) into more
high-level features (from deeper layers) taking into account
the spatial context. Generally, a non-linear activation function
is applied to the output of a convolutional layer, which is
followed by a downsampling (pooling) process to reduce
its dimensionality. After several convolutional and pooling
layers, a fully-connected (FC) layer might be included to
exploit the high-level features learned, which could be seen
as hidden layers of a Multilayer Perceptron (MLP). The last
layer of a CNN is often a softmax classifier that outputs class
membership probabilities for each class. In addition, several
state-of-the-art architectures use Batch Normalization [8] to
make the network training process less sensitive to layer
initialization and also to improve its convergence. This is
done by forcing the set of activations of the previous layer
to have zero mean and unit variance. For a comprehensive
overview of CNNss and deep learning, the reader is referred
to [9].

As in [10], we adopt the CNNs patch-classification
approach. This approach captures the spatial context taking as
input an image patch (extracted from the original image) and
predicts a single label, which is assigned to the central pixel of

the patch. As illustrated in Table 1 the CNN architecture used
in this work is constructed by 3 convolutional (Conv) layers
and 2 pooling (Pool) layers. After each convolution, a batch
normalization is applied as well as a non-linear activation
function (BnAct) to get the output feature map.

Type Filter Size/ Stride Output Size Params
Conv1 3× 3/1 9× 9× 32 1760
BnAct1 - 9× 9× 32 128
Pool1 2× 2/2 5× 5× 32 -
Conv2 1× 1/1 5× 5× 48 1584
BnAct2 - 5× 5× 48 192
Conv2 3× 3/1 5× 5× 64 27712
BnAct2 - 5× 5× 64 256
Pool2 2× 2/2 3× 3× 64 -
FC1 - 128 73856

BnAct3 - 128 512
Softmax - 2 258

Total - - 106.2K

Table 1: Architecture of the CNNs model. Example case for
input image patch of 9× 9× 6.

For the sake of comparison, we also performed patch-
classification using Random Forest (RF) [11], a very common
machine learning approach for image classification. Similarly
to the CNNs architecture described above, only the central
pixel of each image patch was labeled. For both methods,
the procedure consists of three main steps: (i) the input
image is cropped in densely overlapping image patches with
a sliding window technique with stride 1 to preserve the
spatial resolution, (ii) a CNN/RF method is used to perform
both training and inference and (iii) each patch is spatially
concatenated to obtain a classification map at the same
resolution of the input image. It is worth noting that, for
the RF classifier, each image patch is flattened and act as the
feature vector correspondent to the central pixel of the patch. 2651



1x1 5x5 7x7 9x9 11x11
NF EP NF EP NF EP NF EP NF EP

CNNs - - 97.64 95.49 95.61 91.14 97.06 94.27 96.92 93.92
RF 91.18 79.80 95.05 89.38 94.76 88.64 94.30 87.45 93.87 86.30

Table 2: F-score obtained using CNNs and RF to map natural forest (NF) areas and eucalyptus plantations (EP) with different patch
sizes. The highest F-scores values are highlighted in bold.

3.1. Experimental set-up

For the classification experiments, the forest cover map was
divided into training and testing sets. First, a raster-to-vector
conversion was performed to obtain polygons of natural
forests and eucalyptus plantations. Then, these polygons
were randomly partitioned into 70% for training and 30% for
testing (Figure 1b).

We are interested to know how patch size influences the
classification results of CNNs and RF. Thus, we used five
patch dimensions in our experiments: 1 × 1, 5 × 5, 7 × 7,
9 × 9 and 11 × 11 pixels. To assess the final classification
maps we computed the F-score, which is a weighted average
of the precision and recall. It is important to highlight that
only two classes were considered in this study (natural forest
areas and eucalyptus plantations); the background pixels were
set to zero and did not influence the accuracy assessment.

The hyperparameters of the CNNs method were tuned
based on experiments. In order to increment the number
of training samples, we applied a data-augmentation
procedure (rotation and flips). The batch size was selected
experimentally and fixed to 128. For the optimization, we
used Adam optimizer [12] with a learning rate of 0.001.
As non-linear transformation, we selected the Leaky version
of a Rectified Linear Unit (ReLU) function [13]. The RF
method was implemented using the Sklearn module of Python
and Keras with TensorFlow backend for the CNNs. The
models were trained on a desktop workstation with an Intel
Core i7-4790 3.6GHz CPU, 32GB of main memory and an
NVIDIA GeForce GTX1080 graphics processor with 12GB
of memory. All experiments ran under Linux (Ubuntu 16.04
distribution).

4. RESULTS AND DISCUSSION

In Table 2 we show the F-scores obtained for CNNs and
RF with different patch dimensions. Patches of 1 × 1
pixel represent the pixel-wise classification approach, thus
neglecting the spatial context. The best results were obtained
by using 5 × 5 patches. For classifications with RF,
the adoption of such patches showed to increase the F-
score by up to 3.87% for natural forests and 9.58% for
eucalyptus plantations, in comparison to the pixel-wise
approach. However, patches larger than 5×5 pixels decreased
the F-scores of RF for the two classes considered. For CNNs,
the best results were also observed by adopting 5× 5 patches
(Table 2). Conversely to the results of RF, the lowest F-scores
were not observed with the largest patches (11×11), but with
those of 7×7 pixels. More experiments are needed to evaluate
the reasons why this patch dimension provided the poorest
results with CNNs.

Figure 2 shows the classification accuracy (diagonal cells)

Tr
ue

 c
la

ss
 

Predicted class 
NF EP 

NF 96,87 3,03 
EP 3,13 96,97 

Predicted class 

Tr
ue

 C
la

ss
 

NF EP 
NF 90,94 1,00 
EP 9,06 99,00 

CNNs RF 

Figure 2: Confusion matrices showing the classification
accuracy of Natural Forests (NF) and Eucalyptus Plantations
(EP) obtained using CNNs and RF with patches of 5x5 pixels.

and classification errors (off-diagonal cells) of each class for
maps produced by CNNs (a) and RF (b) with 5 × 5 patches.
Both classifiers achieved an accuracy greater than 90% on
the testing set, with CNNs yielding the highest values. The
classification errors between natural forests and eucalyptus
plantations were of about 3% for CNNs and up to 9% for RF.
The error distribution between the classes was more balanced
for CNNs. The RF tended to classify more eucalyptus
plantation pixels as natural forests.

Spatial subsets of the maps produced by CNNs and RF with
different patch dimensions are shown in Figure 3. The red
circle highlights an area of eucalyptus plantation. We can note
that within this area, the number of pixels labeled as natural
forests increases according to the dimensions of the patch
used for classification. Apparently, smaller patches (5 × 5),
are able to better characterize spatial-contextual information
of eucalyptus plantations. Additional experiments are needed
to better understand the influence of patch size.

5. CONCLUSIONS

In this work, we evaluated the use of CNNs, a deep
learning model, to map natural forest areas and eucalyptus
plantations in southeastern Brazil. Data from the MapBiomas
project was used to train CNNs and a classification
error of 3% was obtained. CNNs also outperformed
RF to discriminate between natural forests and eucalyptus
plantations. Experiments performed with patches of different
sizes showed that smaller patches (5 × 5) provided the best
classification results. Future work will incorporate textural
features in the classification process and will explore other
proportions of training and testing samples.
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Figure 3: Classifications maps produced with different patch sizes using convolutional neural networks (CNNs) and Random Forest
(RF). The red circle highlights an area of eucalyptus plantation.
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