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ABSTRACT 

 

Individual tree crown (ITC) delineation is the first step to 

study forest biodiversity and carbon using very high 

resolution remote sensing data. In order to study large areas, 

automatic methods for ITC delineation are necessary. In this 

paper, we compared three methods to delineate ITCs over 

the Jamari National Forest, a closed-canopy tropical forest 

in Amazonia, using very high resolution satellite 

multispectral (MS) and airborne laser scanning data (ALS). 

The best methods for ITC delineation over this tropical 

forest site were the voronoi-based method for ALS data and 

the marker-controlled watershed (MCWS) method for MS 

data. Window sizes of 3x3 (ALS) and 5x5 (MS) m provided 

the appropriate scale for extracting tree crowns over this 

forest. The performance of ITC delineation from ALS and 

MS datasets was similar. Results indicate that tree crown 

delineations can be retrieved from satellite MS data for 

forest monitoring. 

 

Key words — Forest monitoring, Amazon, Jamari 

National Forest, LiDAR, WorldView-2. 

 

1. INTRODUCTION 

 

Forest studies using very high resolution (VHR) remote 

sensing data (pixel <= 1 meter) often require individual tree 

crown (ITC) delineation rather than pixel-by-pixel spectral 

response characterization. Hence, the ITC delineation is the 

first step of many studies addressing, for instance, tree 

species identification [1] and aboveground biomass (AGB) 

estimates [2]. In the last example, tree crown size/diameter 

and height have been used to estimate AGB for individual 

trees using allometric equations [2].  

The manual delineation of ITCs is a time-consuming 

process and is not practical for operational applications over 

large forested areas, i.e. hundreds of hectares. Therefore, 

some automatic delineation methods have been proposed in 

the past decades. For tree detection, the traditional methods 

include local maxima, template matching, and multiscale 

analysis [3]. For tree crown delineation, the traditional 

methods include marker-controlled watershed (MCWS) [4], 

decision tree region growing [5] and voronoi tesselation [6]. 

However, even though different methods for ITC 

delineation exist, most of them have not been tested over 

different types of forests or canopy structures. In reality, 

most of the methods for ITC delineation have been designed 

for natural or planted open-canopy temperate forests with 

low species diversity [2]. Therefore, there is an urgent need 

to evaluate their performance over tropical forests that have, 

by contrast, high species diversity and closed- canopies. 

In this paper, we compared three methods available in R 

language to delineate ITCs over a closed-canopy tropical 

forest in Amazonia using very high resolution multispectral 

(MS) and airborne laser scanning (ALS) data. Specifically, 

we aimed to: (i) determine the best method for tree crown 

delineation; (ii) compare results of delineation between 

satellite MS and ALS data; and (iii) identify the input data 

and parameters that best contribute for ITC delineation. 

 

2. MATERIAL AND METHODS 

 

2.1. Study area 

 

The study area is the Jamari National Forest in the Rondônia 

state, Brazil (Figure 1). It is the first private natural forest 

concession in Brazilian Amazon. It comprises 220,000 ha of 

terra firme lowland dense ombrophylous forests [7], from 

which 96,000 ha have been allocated for selective logging 

since 2008. We focused the analyses on part of the forest 

management unit I, production unit 11, covering 140 ha. 

 

2.2. Datasets 

 

The ALS data was acquired on 9 October 2014 using a 

Trimble Harrier 68i sensor with 360 kHz scan frequency, 

onboard an Embraer SENECA II 810D airplane. The flight 

altitude was 500 m and the view angle was 15˚. The data 

consisted of a point cloud with a density of 51.8 points/m², 

providing the basis to obtain a Digital Terrain Model (DTM) 

and a Canopy Height Model (CHM). For this purpose, the 

point cloud was classified into ground or vegetation classes 

using the lasground, lasheight and lasclassify functions from 

LAStools 3.1.1 [8]. The ground points were used to create a 

DTM with 1 m spatial resolution, which was then used for 

normalization of the point cloud to height above ground. 

Finally, the CHM was extracted considering the highest 

height of vegetation in each cell. These previous steps were 

conducted using the TINSurfaceCreate, ClipData and 

CanopyModel functions from FUSION/LDV 3.6 [9]. 
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Figure 1 – Study area in the Jamari National Forest, Rondonia, 

Brazil. The seven plots (dashed lines, 100 x 100 m) were used 

for validation of the ITC delineation methods. The background 

image represents the ALS-CHM in meters. Coordinates at the 

left panel are UTM, zone 20, WGS84. 

 

The satellite MS data was acquired on 10 October 

2014 by the Worldview-2 satellite with the following 

geometry of data acquisition: solar elevation and azimuth 

angles of 69˚ and 85˚, respectively; viewing elevation and 

azimuth angles of 60˚ and 74˚, respectively; and sensor off-

nadir pointing angle of 26.5˚. We used five available 

multispectral bands (2.4 m spatial resolution; blue, red, 

green, NIR-1, NIR-2) and one panchromatic band (0.5 m). 

In order to obtain surface reflectance data, we applied a top-

of-atmosphere and atmospheric correction using the 6S 

radiative transfer model by the OpticalCalibration function 

from the Orfeo Toolbox 6.4 (OTB). To resample the pixel 

size of the MS data to 0.5 m, we applied the Bayes data 

fusion method implemented in OTB. This fusion method is 

a probabilistic framework that combines the higher spatial 

resolution from the panchromatic band with the resolution 

of the multispectral bands. The MS image was co-registered 

to the ALS-CHM to match the tree crowns. Only a 

translation of a few pixels was necessary to match the 

datasets. 

  

2.3. Automatic ITC delineation 

 

The ITCs were automatically delineated for MS and ALS 

data using three methods available in R v.3.4.3. All the 

methods were based on two steps: tree top detection and tree 

crown segmentation. The basic assumption for the tree top 

detection is that the tops have higher signal than the rest of 

the crown. Therefore, they reflect more electromagnetic 

energy and have high elevation. They can be detected over 

an image using a moving local maxima filter. The tree 

crown segmentation was performed differently between all 

methods. For all methods, in order to achieve optimal 

delineation, we tested different window size (ws) 

parameters: 3x3, 5x5, 7x7, 15x15 meters. For ALS, we used 

the CHM as input data, while for MS we tested the 

following bands: blue, red, green, NIR-1, NIR-2. 

The first method used the vwf and mcws functions from 

ForestTools package [4]. It consists in a square local 

maxima filter to detect the tree tops, using the outputs as 

markers for the MCWS method. The MCWS considers the 

forest canopy as a topographic surface and segments the tree 

crowns by virtually flooding the surface with water from the 

tree tops to the crowns lowest values, which are usually 

shadows. 

The second method was based on the itcIMG function 

from the itcSegment package [5]. It uses a circular local 

maxima filter to find the tree tops within the image, 

smoothed with a low-pass 3 x 3 mean filter. It then applies a 

decision tree method to grow individual crowns around the 

tree tops. This method has three parameters for the 

segmentation: seed and crown thresholds, and maximum 

tree diameter. In order to optimize the results, we iteratively 

tested the seed and crown parameters (seedth and crownth, 

alternating between 0.45 and 0.55), and maximum diameter 

(md, 15 and 30 m). To reduce noise in the delineation using 

ALS-CHM, a minimum tree height threshold was set to 8 

meters. 

The third method was based on the FindTreesCHM 

and ForestCAS functions from the rLiDAR package [6]. 

This method was only applied to ALS data because it 

requires elevation input data to properly work. First, it uses 

a square local maxima filter to find the tree tops over the 

CHM, smoothed with a low-pass 3x3 mean filter. Then, to 

delineate the tree crowns, it follows a series of steps: (1) 

defines an initial radius for each tree top based on a fixed mc 

parameter; (2) segments the data using the centroidal 

voronoi tessellation approach; (3) excludes cells with height 

below a percentage of the maximum height inside the tree 

crown, based on the exclude parameter. The mc (15 and 30 

m) and exclude (0.3 and 0.7) parameters were iteratively 

tested. A minimum tree height threshold was also set to 8 

meters as in method 2. 

 

2.4. ITC validation 

 

For validation of the automatic ITC delineation methods, we 

randomly selected seven plots of 100 x 100 m (1 ha), 

equivalent to 5% of the total area (140 ha). We then 

performed an independent visual assessment by manually 

delineating the tree crowns inside the plots based on a visual 

inspection of true-color composites from the MS data and of 

CHM from the ALS data. The manual delineation was 

performed separately for the MS and ALS datasets to ensure 

confidence on each ITC automatic delineation, because the 

tree crowns between ALS and MS do not always match. 
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We compared the manual and automatic ITC 

delineation using a set of statistical metrics. The tree 

detection was assessed considering the true positive (TP, 

correct detection), false positive (FP, commission error), 

false negative (FN, omission error), precision (p, eq.1), 

recall (r, eq.2) and F-score (F, eq.3) metrics, over-

segmentation (OS) and relative tree density root mean 

square error (RMSE). OS was calculated as the ratio of over-

segmented tree crowns to the total of delineated tree crowns. 

The tree density RMSE was calculated considering the 

number of reference trees and detected trees in each plot, 

and then converted to relative RMSE by dividing it by the 

average number of reference trees. The tree crown 

delineation, i.e. the area mapped by each tree crown, was 

assessed considering the intersection-over-union (IoU) 

metric. The IoU is calculated as the ratio between the 

intersection of areas and the union of areas of each ITC 

delineated between the manual and automatic methods. 

p = TP/(TP + F)  (1) 

r = TP/(TP + FN) (2) 

F = (2 * p * r)/(p+r)  (3) 

 

2.5. Comparative Analysis 

 

The ITC delineation methods were compared considering 

the average of statistical metrics from the seven plots. The 

best result, i.e. combination of parameters and input, for 

each method was identified based on the highest F and IoU 

and lowest tree density RMSE metrics. ITC map subsets for 

the best results were shown for qualitative assessment. We 

further analyzed the sensitivity of methods to variation of 

parameters and input data. 

 

3. RESULTS AND DISCUSSION 

 

When comparing the ITC detection results for each method 

(Table 1), the method 3 obtained the best results for ALS 

data (p = 0.88, r = 0.81), while the methods 1 (p = 0.79, r = 

0.63) and 2 (p = 0.74, r = 0.68) obtained similar results for 

MS data. For the ALS, this means that 88% of the detected 

tree tops were located inside reference tree crowns, 

indicating a very low commission error (12%). In addition, 

81% of the reference tree crowns were successfully mapped, 

indicating a low omission error (18%). Although the ITC 

detection over MS data obtained inferior results than ALS 

data, it still presented a good accuracy because 70% of the 

tree tops were located inside the reference tree crowns and 

over 60% of the trees were mapped. 

The method 3 also presented the best tree crown 

delineation for ALS data (IoU = 0.39), while the methods 1 

(IoU = 0.27) and 2 (IoU = 0.29) presented similar results for 

the MS data (Table 1). In this aspect, the difference in 

performance between datasets was more expressive, where 

39% and 27-29% of the detected area presented intersection 

with the manual delineation when using ALS and MS data, 

respectively. This difference can also be observed in the ITC 

maps from plot six (Figure 2), where the area of each ITC 

delineated by the method 3 more precisely matched the 

manual delineation than the other methods over the datasets.  

The number of detected trees (Rdet in Table 1) was 

overestimated by most methods when compared to the 

reference number of trees (Rref in Table 1), with relative 

RMSE, taking into account the seven plots, ranging from 20 

to 38%. This is further explained by similar over- 

segmentation among the methods (OS from 26 to 36%). The 

number of detected trees is directly related to the window 

size, where the best ws for ITC detection in this site was 3x3 

m for ALS data, and 5x5 m or 7x7 m for MS data using 

method 1 and 2, respectively. The reason why method 2 

applied a larger ws than method 1, whilst still detecting a 

higher tree density, was probably associated with the type of 

window used for tree top detection. While method 1 uses a 

circular window, method 2 uses a square window. 

Although the performance of methods 1 and 2 was 

comparable, method 1 should be superior and more useful 

for operational applications than method 2 because of three 

limitations in method 2. First, its ITC polygons do not 

comprise all the forest canopy area (i.e. gap in north-west of 

the Figure 2). Second, the circle-shaped polygons do not 

accurately represent the crown shapes in the image. Third, 

method 1 is at least 100-fold faster than method 2. 

Regarding the sensitivity of the best methods to 

parameters variation, for method 3 and ALS data, while the 

md parameter did not have any effect on the results, there 

was an improvement in the delineation when increasing the 

exclude parameter from 0.3 (IoU = 0.34) to 0.7 (IoU = 0.39). 

In contrast, an exclude parameter of 0.3 is recommended for 

temperate forests [6]. We believe that this is probably 

because tree crown in those forests are predominantly cone 

or ellipsoid-shaped, and, thus, have a great height variation 

inside each tree crown. Hence, an increase in exclude 

parameter results in a better ITC delineation for tropical 

forests, where tree crowns are typically more tabular-shaped 

than temperate forests. For MS data, NIR-1 and NIR-2 

bands showed equal accuracy (F = 0.7), and superior results 

than the rest of bands (F < 0.6). The NIR wavelength have 

been reported to produce the best ITC delineation in other 

studies because of its sensitivity to vegetation structure [3]. 

 

4. CONCLUSIONS 

 

The performance of ITC delineations from ALS and MS 

datasets were similar, supporting that satellite multispectral 

data could be used for forest monitoring. Amongst the tested 

methods, the voronoi-based method for ALS data and 

MCWS method for MS data provided the best ITC 

delineation. Window sizes of 3x3 (ALS) and 5x5 (MS) m 

provided the appropriate scale for extracting tree crowns in 

this forest. The voronoid-based method was sensitive to the 

exclude parameter, from which higher values should provide 

better results for tropical forests. Meanwhile, the MCWS 

method obtained the best results when using NIR bands. 
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Table 1 – Best ITC delineation performance from each dataset and method. 

Data-

Method 
Parameters Nref Ndet 

N RMSE 

% 
p r F OS IoU 

ALS-M1 ws = 3 426 550 37.8 0.90 0.78 0.83 0.36 0.35 

ALS-M2 
ws = 3, md = 15, 

seedth = 0.55, crownth = 0.55 
426 552 35.9 0.78 0.77 0.77 0.30 0.37 

ALS-M3 ws = 3, mc = 15, exclude = 0.7 426 551 36.0 0.88 0.81 0.84 0.33 0.39 

MS-M1 ws = 5, band = 7 598 591 20.0 0.79 0.63 0.70 0.26 0.27 

MS-M2 
ws = 7, band = 8, md =15, 

seedth = 0.45, crownth = 0.55 
598 695 27.2 0.74 0.68 0.71 0.30 0.29 

 

 
Figure 2 – ITC delineation maps from the manual delineation and three automatic methods (Table 1) using ALS (CHM at 

background) and MS data (RGB composite at background) over plot six. Satellite image(s) courtesy of DigitalGlobe Foundation. 
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