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ABSTRACT 

The Amazon floodplain represents one of the most 
important terrestrial ecosystems being a highly complex 
and dynamic environment, with a key role in the global 
carbon cycle. Therefore, the monitoring and management 
of their aquatic systems is vital to increase the knowledge on 
the biogeochemistry involving water components. Optically 
Active Components (OAC’s) as chlorophyll-a (chl-a) can be 
a proxy to environmental parameters such as water trophic 
status and primary productivity. Standard methods to 
determine chl-a are based on in situ measurements being 
expensive and time consuming, alternatively, remote 
sensing can be a viable option through the calibration of 
chl-a algorithms. Therefore, this work aims the assessment 
of empirical algorithms for chl-a retrieval in Amazon lakes 
with turbid waters using Remote Sensing reflectance (Rrs) 
from in situ data gathered in four campaigns between 2015 
and 2017. In situ Rrs was then used to simulate Landsat 
8/OLI and Sentinel 2/MSI images which were calibrated 
and validated by Monte Carlo simulation. The best 
algorithms were validated using images acquired almost 
concurrently to in situ data acquisition for both sensors. 
Preliminary results pointed out the ability to estimate chl-a 
with errors smaller than 30% for MAPE for simulated data. 
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1. INTRODUCTION 
The Amazon basin has an area of near 6.5 million km2 and it 
is considered the biggest watershed in the world [1]. About 
17% of the basin is composed by a wide floodplain with rich 
biodiversity and providing habitat and ecosystem services for 
flora and fauna, being essential for the biogeochemical cycles 
of carbon and nutrients [2]. 

However, these resources have been threatened by a 
number of anthropic factors with large areas of primary forest 
being degraded by habitat fragmentation, edge effects, 
selective cutting, fires, illegal gold mining, and other 
activities [3]. The progressive increase of these 

anthropogenic factors can affect the quality of water 
resources, leading to an imbalance in aquatic system 
contributing for the occurrence of algae blooms what 
potentially may have impacts on public health [4]. Therefore, 
the monitoring of this resource is necessary to understand the 
effects of these changes, helping in decision-making to 
present and future. 

The monitoring of the aquatic ecosystems is traditionally 
based on situ data acquisition and laboratory analysis which 
are time consuming and costly. Moreover, it is constrained by 
the access to the study site and to sampling designs which do 
not cope with the spatial and temporal variability inherent to 
aquatic environments limiting large scale studies. 

Remote sensing can be a tool for estimating chl-a and as 
an alternative to traditional methods, reducing costs with its 
high spatial and temporal resolution. Among water quality 
parameters apt to be assessed by remote sensing, chl-a 
concentration (chl-a) is important which can be used for 
phytoplankton biomass determination and primary 
productivity studies. In addition, it can be used as a proxy of 
the trophic state of the water body, being the main pigment 
found in all species of phytoplankton. The derivation of chl-
a from remote sensing can be performed through empirical 
and semi-analytical algorithms. Empirical algorithms have 
the benefit of being simple and easy to implement, based on 
band ratios without needing knowledge of AOC’s inherent 
properties. The optically active components interaction with 
the electromagnetic radiation (REM), can be used as a proxy 
for the determination of chl-a.  

There are several algorithms available in the literature for 
chl-a estimation [5]. However, most algorithms were 
developed for oceanic waters mainly influenced by the chl-a 
concentration. Floodplain lakes of the Amazonian are highly 
complex being influenced by "flood pulses" which modifies 
water composition in space and time, altering the proportion 
of dissolved and suspended sediments [6]. This dynamic has 
great influence on the accuracy of the algorithms for 
estimating chl-a since they have been developed for waters 
with low turbidity rates. Therefore, this work aims to assess 
several empirical algorithms [7–13] for turbid waters of the 
Amazon floodplain. 
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2. MATERIAL AND METHODS 

2.1. Study area 
The study area is located in the lower Amazon region, 
northwest of the city of Santarém and at about 900 km from 
Amazon River mouth. The Curuai Lake (CL) was selected 
from more than 30 lakes present in the floodplain area 
because of its size and data availability. CL is a highly 
complex environment with a diverse land use and land cover 
on its banks, and an increasing occupation for agriculture and 
livestock on the former flooded forest areas. With a dynamic 
flooding pulse, the surface of the open water ranges from around 
600 km2 in the dry season up to 3500 km2 at the flood peak [14]. 
The hydrological regime can be defined in four stages, the flooding 
in January and February during which increasing Amazon water 
input to the floodplain up to the overbank flow peaking between 
April and June as a function of the climatic controls on the 
precipitation over the Amazon basin. The water starts to recede 
from August to October up to the river reaches its minimal stages 
from October to December when the floodplain lakes become very 
shallow with depths below to one meter [1]. 
 

 
Figure 1: Location of study lakes and sampling points. 

2.2. Limnological data 
Limnological data were acquired in four field missions, June 
2015 during the flood season, March, 2016, during the rising 
season, July 2016 during the flood season, and August 2017 
during the receding season. The chlorophyll-a concentration 
measurements were determined in duplicate according to the 
methodology described by [15] using Whatman GF/C (1,2 
µm) glass fiber filter. The Total Suspended Solids (TSS) were 
determined based on [16] also in duplicate, and was separated 
in its organic (TSO) and inorganic fractions (TSI). Both 
measurements (chl-a and TSS) were calculated using simple 
mean of the duplicates. 
 

2.3. Radiometric data 
The radiometric data were collected using the radiometer 
TriOS Ramses with three sensors to measure Water- leaving 
radiance (Lt), sky diffuse radiance (Lsky) and irradiance 
towards water surface (Ed) in the spectral interval from 320 
to 950 nm and resolution of 3,33 nm. The remote sensing 
reflectance (Rrs) was calculated (Equation 1) using the glint 
correction proposed by [17] with inputs of wind, latitude, 
longitude, time and date of field sampling points. 

 
A representative spectrum was selected among over 150 

measurements for each sampling station, first with a visual 
outlier removal and then based on the minimum sum value of 
the difference between median Rrs values at each wavelength 
per true Rrs value at each wavelength. Then, the spectral 
bands from OLI and MSI were simulated using the spectral 
response function for each sensor [18, 19]. 
 

2.4. Satellite Data 
Orbital data were acquired for OLI (Landsat 8) and MSI 
(Sentinel 2A e 2B) sensors. Available images were selected 
considering cloud cover and temporal interval between field 
(August 08 to 12) and satellite acquisitions. The selected 
images for both sensors are from August/2017, being august 
10 to OLI and 08 to MSI. All data were acquired from USGS 
(United States Geological Survey) and Copernicus (ESA 
European Space Agency) databases. The images were 
downloaded as level-1 product already with radiometric 
calibration and orthorectified but lacking atmospheric 
correction. Thus 6S (Second Simulation of The Satellite 
Signal in The Solar Spectrum [20]) radiative transfer code 
was applied using input parameters of Water Vapor, Ozone, 
AOT from MODIS data. An additional glint correction was 
applied by subtracting SWIR band Rrs values from visible and 
NIR (VNIR) bands considering that the signal should be close 
to zero at SWIR spectral region [21]. 
 

2.5. Empirical Algorithms 
Empirical algorithms from literature for chlorophyll-a 
retrieval were assessed for turbid waters. The models were 
applied to simulated OLI, MSI bands using in in situ spectra. 
A total of 11 algorithm with variations of 6 pre-selected 
algorithms (Table 1). 

Table 1: Selected semi-empirical Algorithms. 

 
 

2.6. Statistical Analysis 
To calibrate and validate the algorithms, a Monte Carlo 
simulation with 10000 interactions was implement for each 
algorithm and sensor. Two datasets were created, one to 
calibrate the algorithm with 70% of the Rrs samples and 
another with 30% for validation. Linear and Polynomial fit 
were tested for each algorithm. Three types of datasets were 
used in the simulation: i) a set composed for the data acquired 
in all field campaigns, ii) one consisting of data acquired in a 
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specific campaign iii) one set consisting of samples acquired 
in similar hydrograph phase. The statistical methods criteria 
for selecting the best models were Mean absolute percentage 
error (MAPE), root-mean-square error (RMSE) and R2. 
 

3. RESULTS 

3.1. Optical Active Components 
The limnological data for the main OAC’s are presented in 
Figure 2 with minimum, mean and maximum for all field 
campaigns. 

Figure 2: AOC’s minimum, maximum and mean for each 
campaign. 

3.2. Field data calibration and validation 
From the algorithms tested for all data sets, satisfactory 
results were observed only for August/2017 (A17) campaign 
and for data acquired July/2016 and August/2017 (J16A17) 
campaigns (MAPE <50%) (Table 3). The algorithms chl-a 
[7], MCI [10] and 3B [12] did not reliable calibration results 
for both campaigns.  

The results of the A17 campaign show MAPE values 
ranging from 25.57% up to 40.09%, with a minimum RMSE 
of 2.05 µgL−1 and maximum of 16.50 µgL−1. The R2 scored 
between 0.70 to 0.90 for most models. However, for J16A17 
campaign, the MAPE values varied from 39.82% to 64.85%. 
R2 values ranged between 0.30 to 0.80 with some algorithms 
for MSI sensor with R2 > 0.75 (Table 2). 

Table 2: MC simulation results for field calibration. 
Lake Curuai (August 17) Lake Curuai (July 16 and August 17) 

Algorithms 
MAPE R2 RMSE 

Algorithms 
MAPE R2 RMSE 

(%)  (µgL-1) (%)   (µgL-1) 
NDCI G/R OLI Lin 25.57 0.79 10.83 NDCI G/R OLI Lin 39.82 0.29 12.49 
Slope N/R S2A Lin 26.46 0.92 6.72 NDCI G/R OLI Pol 41.61 0.33 18.04 
NDCI N/R S2A Lin 27.27 0.89 2.05 Slope R/G OLI Lin 42.02 0.41 12.05 
NDCI N/R S2A Pol 27.47 0.87 8.64 Slope R/G S2A Pol 42.13 0.44 18.26 
Slope N/R S2A Pol 27.70 0.92 7.76 Slope R/G S2A Lin 42.16 0.44 18.26 
Slope R/G S2A Lin 29.38 0.76 11.45 Slope R/G OLI Pol 42.21 0.41 18.49 
Slope R/G S2A Pol 29.38 0.76 2.27 NDCI N/R S2A Lin 46.69 0.81 10.69 
Slope R/G OLI Pol 29.71 0.74 12.14 Slope N2/R S2A Lin 48.33 0.39 17.76 
Slope R/G OLI Lin 30.03 0.76 12.76 Slope N2/R S2A Pol 48.95 0.39 17.19 
NDCI G/R OLI Pol 32.48 0.71 10.40 NDCI N/R S2A Pol 50.04 0.76 17.49 

CHL MBR2012 S2A Pol 33.20 0.81 9.81 Slope N/R S2A Lin 51.84 0.87 10.69 
Slope N2/R S2A Lin 36.42 0.56 14.93     
Slope N2/R S2A Pol 38.08 0.44 16.50     

CHL MBR2012 S2A Lin 40.09 0.73 11.69     
A3B moses2009 S2A Lin 45.85 0.04 18.00     

 

3.2.1. Landsat 8 / OLI 
For OLI, the best algorithm for both campaigns is NDCI [13] 
using green and red bands with linear fit (MAPE = 25.57% 
and 39.82% for A17 and J16A17, respectively). Moreover, 
for both fits (linear and Polynomial) satisfactory results were 
found (MAPE of 29% for A17 and 42% for J16A17) to the 
Slope [9] algorithm with green and red bands. Slope R2 values 
for A17 campaign ranged from 0.74 up to 0.76. However, for 
J16A17 it had a low performance (<0.45). RMSE values also 
showed differences between the datasets with a wider range 
for J16A17 (12.05 to 18.49 µgL−1) than A17 (10.40 to 12 
µgL−1). 
 

3.1.2. Sentinel 2 / MSI 
For the MSI, the algorithms calibrated with the field data also 
showed better performance in the A17 campaign. The NDCI 
Algorithms using the NIR (B5) and Red (B4) bands obtained 
a good fit for A17 (MAPE < 28%) e R2 > 0.87 with low 
RMSE values (2.05-8.64 µgL−1). The Slope algorithm also 
obtained good performance for NIR and red bands with 
MAPE < 28% and R2= 0.92 for this campaign. Using the red 
and green bands the algorithm got good scores with MAPE = 
30% and R2 = 0.76. But for NIR2 (740nm) and red bands the 
adjustments rendered poorer results with MAPE above 33% 
and R2 ~ 0.50 and also with high values of RMSE (14.93-
16.50 µgL−1) for A17 campaign. The 3-band [11] algorithm 
had a MAPE = 33.20% with a correlation of 0.81 and RMSE 
= 9.81 µgL−1 for polynomial fit at A17 campaign. The linear 
fit had the poorest result with MAPE=40.09%, R2 = 0.73 and 
RMSE = 11.69 µgL−1. 

In the J16A17 campaign only the NDCI and Slope 
algorithms presented satisfactory results for MSI, but with 
MAPE values ranging from in 42% up to 52%. However, 
both fits of NDCI with NIR and red show good R2 (0.76 and 
0.81).  
 

3.3. Image Validation 
Algorithms with MAPE’s lower than 45% from MC 
simulation with field data were applied to the selected images 
from Sentinel 2/MSI (14 variants) and Landsat8/OLI (7 
variants). The best algorithms were determined through 
validation over field data from CL in August 2017 (n=18). 
 

Table 3: Best algorithms from image (MAPE<100%) 
selected for J16A17 and A17 campaigns (n=18). 

MSI Algorithms 
MAPE R2 RMSE 

(%)   (µgL-1) 
NDCI NR MSI A17 Lin 42.70 0.26 14.22 
NDCI NR MSI A17 Pol 45.71 0.27 14.41 
NDCI NR MSI J16A17 Lin 48.49 0.26 15.44 
slope N2R MSI A17 Lin 77.71 0.39 17.50 

OLI Algorithms 
MAPE R2 RMSE 

(%)   (µgL-1) 
NDCI GR OLI J16A17 Lin 37.33 0.28 0.80 
NDCI GR OLI A17 Pol 40.82 0.18 4.25 
NDCI GR OLI J16A17 Pol 42.14 0.31 1.83 
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Table 3 presents only the algorithms with MAPE values 

lower than 100% when applied to the images. The NDCI with 
NIR and red bands for MSI (MAPE = 42.70% and 45.71% 
for linear and polynomial, respectively), but with R2 = 0.27 
and RMSE =14.30 µgL−1. For OLI only the NDCI algorithm 
using the green and red bands had good results with MAPE 
values of 40.82% for A17 and 37.33% and 42.14% for 
J16A17. However, for both sensors the values of R2 obtained 
low performances ranging from 0.18 to 0.39. For the RMSE 
values, the OLI models presented values between 0.80 e 1.83 
µgL−1 while for the MSI the values varied between 14.22 e 
17.50 µgL−1. 

 
4. DISCUSSION 

It is possible observe a better performance (low MAPE, 
highest R2 and lowest RMSE) for the algorithms using red- 
edge NIR (B5) band in A17 campaign when validated with 
field data, due to scattering by phytoplankton’s cell structure 
around 705nm [10]. These results corroborate with the results 
obtained by [13] in three bays in the United States (R2 = 0.90) 
with concentrations up to 30 µgL−1 and also for simulated 
data (R2 = 0.95) with 60 µgL−1. Even without the red-edge 
bands the OLI sensor presented positive results for chl-a 
estimation algorithms with the field data, using the green and 
red band ratios. 

Even though A17 and J16 campaigns have similar AOC’s 
concentration, they are in different hydrological conditions. 
Where J16 campaign (High water) had low water levels due 
to a hydrological year of drought while for the A17 campaign 
(receding) the water level was for a typical year. 

The best algorithm applied to image was NDCI [13] in 
green and red bands on OLI sensor and NIR/red bands on 
MSI sensor. But, this algorithm presented a low relation with 
the data collected in the field. The temporal variability 
between the field collections, highly interaction between 
OAC’s and REM, the stratification of chl-a in the water 
column and even differences in sensor characteristics (TriOS 
and satellites) may lead to modeling inaccuracies. 

 
5. CONCLUSIONS 

The results pointed out the difficulty to decorrelate OAC’s 
through empirical algorithms in turbid environments. 
However, the algorithms had good agreement with chl-a 
estimative when applied to field data thus confirming its 
feasibility for use in turbid waters. The temporal variability 
between field and satellite data may have been incompatible 
for the detection of the chl-a dynamics in the lake, thus 
justifying the discrepancies of the field and satellite 
calibrations. 
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