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ABSTRACT 

 

The objective of this study was the carbon dioxide (CO2) 

spatiotemporal dynamics and related factors assessment 

during 2015–2018 in the state of Mato Grosso, Brazil. The 

data were obtained through a temporal series of remote data 

and multispectral imagery. We observed that forest areas 

converted to other land uses reached higher values, that 

characterize with sources, and those the highest and lowest 

average concentrations of CO2 are related to the dry and rainy 

months, respectively, for dry air mole fraction (XCO2) in the 
atmosphere, which might be the result of differences in the 

vertical resolution of the CO2 column and scale. Therefore, 

both XCO2 and CO2 flux are related land use and land cover 

changes (LULCC), looking at complex systems that are 

affected by climatic variables and processes, such as 

photosynthesis and soil respiration. 

 

Key words — Carbon dioxide, XCO2, land use and land 

cover. 

 

1. INTRODUCTION 
 
The sustainable expansion of the world economy is directly 

linked to greenhouse gas (GHG) sources and sinks in 

production systems [1].  

The high rates of GHG emissions related to agriculture 

come out from the inappropriate use of soil and water 

resources, the excessive use of agrochemicals, such as 

fertilizers [2], deforestation, and the use of fire for pasture 

management, renewal and expansion of areas, and farming 

activities [3, 4]. 

Land use and land cover change (LULCC) for 

commodity production is one of Brazil's main GHG sources, 

making the country responsible for 2.8% of global emissions 
[5]. Among its producing regions, the state of Mato Grosso 

(SMT) is the country's leading agricultural frontier as it is the 

main commodities producer [6, 7]. In particular, the SMT 

leads national production in soybeans and animal protein, 

which are drivers of deforestation, accounting for 22 Mha of 

pastures and 10.2 Mha of areas cultivated with soybean in 

2018 [8]. 

Given this, it is interesting to highlight the importance of 

estimating biophysical parameters of vegetations and 

correlating CO2 concentrations through geotechnologies.  

Therefore, the objective of this study was to use remote 
sensing approach on CO2 spatiotemporal dynamics of 

assessment, from 2015 to 2018 in the SMT. 

 

 

2. MATERIAL AND METHODS 

 

In this study, column-averaged carbon dioxide (CO2) dry air 

mole fraction in the atmosphere, set as XCO2 data was based 

on Orbiting Carbon Observatory-2 satellite, ranging from 

January 2015 to December 2018.  
The enhanced vegetation index (EVI) data were based on 

the Moderate-Resolution Imaging Spectroradiometer 
(MODIS) sensor, and rainfall data stem from the Climate 

Hazards Group InfraRed Precipitation with Station dataset. 

From Landsat-8 satellite image series, it was possible to 

distinguish land use and land cover classes, as estimate the 

CO2 flux over the study site. 
To study the temporal variation of the variables, scatter 

plots and boxplots were made on the evaluated time series. 

Furthermore, a heatmap containing Pearson's correlations 

between variables was made. The statistical analyses were 

performed using R software [9]. 
 

3. RESULTS 
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A Pearson's correlation analysis was applied to check the 

relation between XCO2 and the other variables (Figure 1). The 

CO2Flux (Figure 1) had positive correlations (r = 0.66, 0.68, 

and 0.44, respectively) with rainfall, SPI, and the EVI, due to 
the vigor of photosynthetically active vegetation, allowing it 

to capture the absorption from carbon in the process of 

photosynthesis and loss through respiration. 

 
Figure 1. Heatmap of Pearson's correlation matrix for 

XCO2 with CO2 flux (FCO2), rainfall, and standardized 

precipitation index (SPI-12) for the State of Mato 

Grosso, Brazil. 
 

 

 
Figure 2. Land use in the State of Mato Grosso, Brazil 

during 2015, 2016, 2017, and 2018. 
 

The NDFI (Figure 2) showed an expansion in variations in 

land cover from the exposed soil area (bare soil) to the 

anthropization area in the southeastern region of the SMT 

between 2016 and 2017. Meanwhile, in the northeastern 

region, soybean crop areas were replaced by exposed soil. 

In addition, the forest areas underwent significant 

changes in the southern part of the state, wherein 2015 and 

2017 presented least fragmented forest areas than 2016 and 

2018. In the northern region, there was an increase in soybean 

production areas as a result of direct forest replacement and 
forest/grassland succession. 

The annual average rainfall in 2015 was the highest in 

the northwest region, but gradually shifted to the center and 

north by 2018. According to the rainfall, 2015 had the worst 

distribution, 2016 and 2018 had an equal distribution, and 

2018 had the highest distribution and volume of rainfall. 

The SPI-12 shows varying drought conditions in the 

SMT during the study period. In particular, the average 

annual results showed that among the years evaluated, 2015 

experienced the most severe drought, while 2018 was the 

rainier year. The northeast, north, northwest, west, and 
southwest regions in 2015 presented drought records 

associated with extreme to moderate droughts, revealing the 

highest annual drought spatialization, as compared as the next 

three years. Further, 2018 had the lowest total average annual 

drought. 

The CO2 flux results showed that the northwest and 

northeast regions had the lower CO2flux results, which was 

consistent for all study years. These regions are characterized 

by the highest percentages of forest vegetation areas (Figure 

3). 
 

 
Figure 3. CO2 flux for the state of Mato Grosso, Brazil 

for 2015, 2016, 2017, and 2018. 
 

The spatial pattern results of the atmospheric concentration 

of annual averages of XCO2 revealed that the maximum 

observed values were 402 ppm 405 ppm over the study 

period (Figure 4). Conversely, in the mid-north regions, the 

CO2 flux exhibited opposite behavior, revealing higher 

amounts and positive values for CO2. Note that this region is 
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a major soybean producing area in the state, consisting of 

municipalities such as Sorriso, Sapezal, and Sinop. 
 

 
Figure 4. Spatial patterns of atmospheric XCO2 

concentration for the State of Mato Grosso, Brazil for 

2015, 2016, 2017, and 2018. 
 

In the mid-north regions, hotspots were observed in 2015 and 

2016. Note that 2015 and 2016 had higher atmospheric spatial 
patterns of XCO2 concentration (ppm) than 2017 and 2018. 

Further, in the northwest and northeast regions, we observed 

higher atmospheric spatial concentrations of XCO2. Therefore, 

the hotspots had lower values in 2018 than the other years, 

showing a 0.7% reduction in the annual averages of XCO2 

concentration (ppm), as compared with that of 2015. 
 

4. DISCUSSION 

 

LULC changes are driving factors of the carbon cycle. 

Specifically, different land uses influence CO2 absorption and 
CO2 flux to the atmosphere [10]. For example, forested areas 

tend to sequester CO2 from the atmosphere [11, 12], 

incorporate carbon into their biomass, and split it into the soil. 
Note that the areas in the mid-north of the SMT had a 

concentration of positive values of the highest annual 

averages of CO2 flux, indicating carbon loss to the 

atmosphere via respiration. Also note that this region has 

intense farming [13]. Land use change [14, 15], can explain 

the higher observations of CO2 fluxes in these areas. In 

particular, net carbon fluxes from LULC changes accounted 

for 12.5% of anthropogenic carbon emissions over the last 

decade [16] (Houghton et al., 2012).  
Increase of 3 ppm and 2 ppm in 2015 and 2016, 

respectively, in the observed maximum annual atmospheric 

XCO2 concentration, as compared with that of 2018, can be 

attributed to influence of El Niño [17, 18, 19, 20] which 

contributes to a global increase in atmospheric CO2 as a 

response of the terrestrial carbon cycle induced by changing 

weather patterns [21]. 
The severe drought observed in 2015 was also the result 

of El Niño events [18]. Meanwhile, 2018 was an extremely 
wet year in the central region of the SMT, which ultimately 

resulted in lower XCO2 values. 
Chhabra and Gohel (2020) mentioned that high rainfall 

contributes to vegetation growth and development and 

increases photosynthetic activity, thus reducing the 

atmospheric CO2 concentration. Thus, monthly CO2 

concentration fluctuations can be linked to water vapor 

content, rainfall, and vegetation cover [22, 23]. 
 

5. CONCLUSIONS 

 
Regarding spatial variability, converting forests into other 

land uses caused increased CO2 concentrations over the SMT. 

Similarly, areas with large forest ranges presented lower CO2 

concentrations, mitigating climate change. 

Therefore, not only XCO2 but also CO2 concentrations are 

directly related to LULC in complex systems that are affected 

by climatic variables and processes, such as photosynthesis 

and soil respiration. 

Thus, we conclude that, remote sensing provides reliable 

and accessible data for spatio-temporal dynamics of CO2 

monitoring, as detecting possible changes with time series. 
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