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ABSTRACT 

 
Land-use land-cover (LULC) classification has long been an 

important topic in Earth observation research, frequently 

evaluated with recent advances in remote sensing science. 

This study evaluated the accuracy and suitability of LULC 

classifications based on the scale effect of a multi-temporal 

superpixel-based segmentation using PlanetScope (PS) data. 

We applied the Simple Non-Iterative Clustering (SNIC) 

algorithm testing five scale factors: 20, 50, 80, 110, and 140. 

We extracted statistical information of PS bands and 

vegetation indices from image-objects as input information 

for classification. In addition, segmentation tests were 

evaluated by analyzing the variability inside image-objects. 

Our results showed that the scale factor of 50 presented the 

highest accuracy while the scale factor of 20 returned the 

poorest. The scale factor of 20 also created a large number of 

image-objects inside land parcels, while scale factors of 110 

and 140 merged adjacent areas. Segmentation evaluation 

demonstrated that a satisfactory scale factor for classification 

is essential once it directly affects the within-class variability 

and spoils segmentation suitability. The evaluation of these 

classifications has provided important insights into the effect 

of the scale factor in high-resolution imagery. 

 

Key words — object-based image analysis, SNIC, scale 

factor, Google Earth Engine, Random Forest. 

 

1. INTRODUCTION 
 

LULC classification is a crucial planning tool illustrating the 

spatial distribution of the Earth's surface attributes and plays 

a pivotal role in the sustainable development of agronomics, 

environment, and economics [1].  

In recent years, LULC classification procedures have 

been supported by the establishment of many satellites, new 

sensors, and the integration of advanced methods in digital 

image processing [2]. These new spaceborne platforms, such 

as the constellation of Planet CubeSats, have provided a 

powerful combination of high spatial (3 m pixel-size) and 

temporal (daily) resolution imagery for fine-scale LULC 

classification and monitoring [3]. 

Along with this growth in data availability, recent 

advances in digital image processing methods have improved 

the investigation of LULC classification accuracy. In 

particular, object-based image analysis (OBIA) has become 

more popular compared to traditional pixel-based 

classification methods due to their capability to delineate and 

classify the LULC at different scales [4].  

Image segmentation is a crucial step in OBIA and divides 

an image into groups of pixels that are spatially continuous 

and spectrally homogeneous, also known as image-objects. 

In this regard, the SNIC algorithm [5], available in Google 

Earth Engine (GEE) [6], proved to be efficient in grouping a 

large number of pixels into smaller clusters called 

superpixels. Temporal information can also be included in the 

image segmentation step, called multitemporal segmentation. 

In this case, the segmentation output relies on spatial, 

spectral, and temporal attributes to delineate suitable objects 

affected by temporal dynamics [7]. 

In this study, we evaluated the accuracy of LULC 

classification based on the scale effect of a multi-temporal 

superpixel-based segmentation using PS data. In addition, we 

analyzed the image-objects variability and segmentation 

suitability while accounting for the influence of the scale 

factor parameter. 

 

2. MATERIAL AND METHODS 
 

2.1. Study area 

 

The study area is located in the western region of São Paulo 

State, Brazil. Totaling 7,300 hectares, the area is occupied by 

LULC classes comprising cultivated pasture, eucalyptus 

plantations, native forest, integrated crop-livestock systems, 

shrub pasture, and wetlands. 
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2.2. PlanetScope data processing 

 

We acquired PS images from September 1st 2017, to August 

31st 2020, covering the study region. This time interval 

corresponds to the period of three agricultural years in the 

region: 2017-2018, 2018-2019, and 2019-2020. We selected 

all surface reflectance images with 0% of cloud cover to 

generate cloud-free time series for each agricultural year.  

A set of nine PS band/indices was generated to classify 

the LULC in the study area: the Enhanced Vegetation Index 

(EVI), Green Normalized Difference Vegetation Index 

(GNDVI), Modified Soil Adjusted Vegetation Index 

(MSAVI), Normalized Difference Vegetation Index (NDVI), 

and Soil Adjusted Vegetation Index (SAVI). We also used PS 

spectral bands Blue, Green, Red, and NIR. 

To overcome long image gaps in the time series due to 

cloud cover, we calculated a 10-day image composition by 

selecting the median value of each band/index in a 10-day 

interval. These image composites also provided a more 

consistent time series with equal time intervals. 

 

2.3. Superpixel segmentation and parameter setting 

 

Image superpixel multitemporal segmentation was 

implemented within the GEE environment based on the SNIC 

algorithm performed on the NDVI images of each 

agricultural year. This method created multitemporal image 

objects by segmenting multiple NDVI images of sequential 

periods. It incorporated spectral, spatial, and temporal 

information from NDVI images, which created objects based 

on the LULC dynamics in time, such as crop activities. 

The multitemporal segmentation was based on two main 

steps. First, a grid of seeds established a superpixel seed 

location spacing (denoted hereafter by scale factor), 

influencing the image-objects size. This study tested five 

scale factors: 20, 50, 80, 110, and 140 PS pixels. These values 

were identified after some initial general experiments and 

considering the shape characteristics of the LULC classes in 

the study area. Second, SNIC required setting some main 

parameters: the "compactness factor" was set to 0.5 and 

affects the object shape; the "connectivity" was set to 4 and 

defined the type of contiguity to merge adjacent objects, and 

a "neighborhoodSize" was set to 256 to avoid tile boundary 

artifacts. We set these parameters considering the 

characteristics of the LULC classes and applied the same 

parameter configuration for all tests. 

 

2.4. Reference data 

 

Field campaigns were carried out from May 2019 and 

February 2020 to collect reference data points. The LULC 

information was collected based on the current land cover 

during the field campaigns and interviewing local farmers to 

obtain the area's historical land use. From the reference data, 

we set six LULC classes: cultivated pasture, eucalyptus 

plantations, native forest, integrated crop-livestock systems, 

shrub pasture, and wetlands. 

 

2.5. LULC classification 

 

From image-objects, we extracted four descriptive attributes: 

mean, 95th and 5th percentile (hereafter labeled as maximum 

and minimum respectively), and standard deviation based on 

each band/index values inside the objects. The initial pool of 

variables was screened to limit the potential effects of 

multicollinearity by calculating correlations between pairs of 

variables using the Pearson’s R correlation coefficient. We 

removed those with R values greater than 0.90. 

We used the Random Forest algorithm (RF; [8]) to 

classify the LULC in the study area. In this study, we tuned 

three RF parameters that control the structure of the 

algorithm: the number of trees to grow, or Ntree; the number 

of predictors sampled at each tree node, or Mtry; and the 

minimum size of terminal nodes. The control of node size 

parameter defines the minimum number of observations in a 

terminal node. We used the following parameter values in the 

RF tuning: Ntree = {200, 600, 1000}; Mtry = {√𝑝/4, √𝑝/2, 

√𝑝} with 𝑝 the total number of variables; and node size = {2, 

6, 10}.  

Five RF classifications, representing each scale factor test 

were performed. We balanced the number of observations by 

sampling 100 image-objects per LULC class when available, 

then split the data into 70% for training, while 30% was used 

for the test set to assess the generalization error of the RF 

model. Observations of training and test sets were sampled 

from the first two agricultural years (2017-2018 and 2018-

2019) while all observations from the last year (2019-2020) 

were set for prediction analysis and LULC maps illustration. 

Finally, the overall accuracy of test sets, the total number of 

image-objects, and the number of image-objects per hectare 

were calculated in order to compare the performance of scale 

factor-based segmentations. 

 

2.6. Segmentation evaluation 

 

The segmentation tests were evaluated by analyzing the 

variability inside image-objects. The standard deviations by 

LULC class of the entire set of variables were graphically 

presented using boxplots. In addition, a qualitative analysis 

through visual interpretation of segmentation suitability was 

also done. 

 

3. RESULTS 

 

The overall accuracies based on segmentation tests allowed 

us to evaluate the performance of the scale factor parameter 

(Table 1). The superpixel-based segmentation test with a 

scale factor of 50 presented the highest overall accuracy, 

while the scale factor of 20 was the lowest. Another 

interesting aspect of these results is that the overall accuracy 

decreased once the scale factor increased after the test of 50. 
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Figure 1. a) LULC classification maps based on each scale factor, and b) PS image in false color composite (R = NIR, G 

= Red, B = Green) with scale factor segmentations. 

 

Since the scale factor controls the image-object size, our 

results confirm that the larger the scale factor the fewer the 

number of image objects, ergo, the smaller the rate of image-

objects per hectare (Table 1). 

 

Scale factor 
Number of 

image-objects 

Image-

objects/ha 

Overall 

accuracy 

20 32227 4.23 0.85 

50 5103 0.68 0.94 

80 2039 0.27 0.88 

110 1086 0.14 0.87 

140 670 0.09 0.86 

Table 1. Accuracy analysis and segmentation outputs per scale 

factor. 

 

LULC classification maps illustrated the overall accuracy 

achieved for each segmentation test (Figure 1a). Our results 

showed that lower-scale factors returned isolated image-

objects, characterizing a slight "salt-and-pepper" speckle in 

classification outputs. There is also an "optimal" scale factor 

with regard to the visual analysis of the land parcels 

delineation. While the scale factor of 20 created a large 

number of image-objects inside land parcels and scale factors 

of 110 and 140 merged adjacent areas, scale factors of 50 and 

80 seemed to generate suitable segmentations for the study 

area (Figure 1b).  

Turning now to the segmentation evaluation, the class-

related standard deviations are graphically presented in 

Figure 2. The most interesting aspect of these results is that 

the greater the scale factor, the higher the variability inside 

image-objects. Some LULC classes presented higher 

variability than others considering a fixed scale factor, e.g., 

some Wetlands image-objects with a scale factor of 140 

presented the highest values of standard deviations of all 

LULC classes.  

 

4. DISCUSSION 

 

The fundamental assumption in OBIA is that image-

objects derived through multi-temporal segmentation 

correspond to LULC elements at the surface with additional 

temporal information. However, the optimal delineation may 

not be possible in all instances, particularly in superpixel-

based segmentation, where image-objects have related sizes 

due to their growth around the seed grid. 

We demonstrated that classification accuracies of multi-

temporal segmentation were related to the shapes of the SNIC 

superpixels, essentially their size. Overall accuracy outputs 

decreased gradually when image-objects size increased. One 

potential reason is that large image-objects merge different 

adjacent LULC patches (e.g., forest and shrub pasture). 

Therefore, this affects the intra-variability and class-based 

descriptive attributes of image-objects, introduced in this 

study as mean, maximum, minimum, and standard deviation, 

which increases the complexity and uncertainty in the 

classification analysis. 

However, the smallest scale factor also presented low 

accuracy and a slight "salt-and-pepper" speckle. This result 

may be explained by the fact that the integration of spectral 
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signatures across a small number of pixels decreases the 

contrast among LULC classes due to an increase in within-

class spectral variation. 

 

 
Figure 2. Band/index variability inside image-objects by LULC 

class and scale factor.  
 

Based on our results, it can be determined that there is an 

evident scale effect in LULC classification using SNIC 

superpixel segmentation in PS images, which implied in the 

choice of an optimal scale factor for classification in our 

study area. This finding broadly supports the work of other 

studies about LULC classification linking scale factors with 

classification accuracies [9], [10]. However, specific scale 

analysis for specific objectives is essential, where not only 

the complexity of an image needs to be considered but also 

the feasibility of the method. 

 

5. CONCLUSION 

 

In this study, we have exploited the scale effect of a multi-

temporal superpixel-based segmentation to evaluate the 

LULC classification accuracy in the western region of São 

Paulo State, Brazil. We demonstrated that there is an evident 

scale effect in classification accuracies using SNIC 

superpixel segmentation in PS images. The choice of a 

satisfactory scale factor for classification is essential once it 

directly affects the within-class variability and spoils 

segmentation suitability. Thus, we encourage remote sensing 

scientists who require the highest quality of LULC 

classification to consider their choice of the scale factor 

carefully. 
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