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ABSTRACT 

 

Satellite images and remote sensing techniques allow several 

studies, including the identification and characterization of 

land use and occupation and urban sprawl. Urban sprawl is 

usually associated with environmental degradation, and an 

increase in disasters has been observed. Therefore, this study 

analyzes the urban sprawl of Guarujá municipality using 

remote sensing techniques, machine learning, and Data 

Mining. The NDVI was performed to enhance the 

identification of the vegetation. A temporal analysis from 

1990 to 2020 was performed, using satellite images from the 

Landsat series. The results indicate an increase in the urban 

area, and, consequently, a decrease in the vegetation. The 

CART algorithm correctly distinguished the urban areas, the 

vegetation, and the water. Moreover, the NDVI provided 

important information about environmental degradation and 

loss of biomass. 

Keywords — Urban sprawl, Data Mining, Machine 

learning, Landsat. 

 

1. INTRODUCTION 
 

The use of satellite images associated with remote sensing 

techniques has been used in several different types of 

research, such as land use and occupation, environmental 

degradation, disaster management, detection of burning 

areas, and urban sprawl [1]–[6]. Considering the advance of 

remote sensing techniques and the total amount of digital data 

available, it is necessary to determine the most relevant data 

and information for each study. Therefore, it is recommended 

to use machine learning and Data Mining. Data Mining is a 

process that automatically finds patterns and attributes from 

large data volumes, clustering them. In remote sensing 

applications, the Data Mining process is used to extract 

attributes and characteristics (spatial and spectral 

information) from pixels or objects (regions) present in 

digital images [7]. There are several different data mining 

algorithms: decision- tree, Self-Organizes Maps (SOM), 

Neural networks, the C4.5 algorithm implemented in WEKA 

software, and Classification and Regression Trees (CART) in 

the eCognition platform, among others.  

Urban sprawl has been occurring in most cities since the 

1950s and is usually associated with environmental 

degradation. Notwithstanding, the increase in the number of 

disasters has been documented [8]. That’s the scenario of 

Guarujá municipality (Brazil), where the urban sprawl 

reduces the natural vegetation, and steep slopes have suffered 

anthropic changes. This study analyzes the urban sprawl of 

Guarujá municipality using remote sensing techniques, 

machine learning, and Data Mining. A temporal analysis was 

conducted to verify how the urban expansion from 1990 to 

2021 affected the area, comparing the four satellite image 

classifications. To improve understanding of land use and 

occupation and its influence on disasters, a detailed 

classification of the Vila Baiana neighborhood, which 

frequently suffers from landslides, was provided. 

 

2. MATERIAL AND METHODS 

 

The study area of this work is the Guarujá, municipality, and 

Vila Baiana neighborhood, located within the Brazilian 

southeastern State of Sao Paulo, as presented in  Figure 1.  

 
Figure 1. Study area location. 

According to IBGE (2019) [9], the municipality has 320,459 

inhabitants and a territorial extension of 144,794 km². The 

mean annual precipitation is 3,000 mm, and the mean annual 

temperature is 22ºC. As for its geology, the area is on a 

crystalline plateau, with gneiss and granite from the Pre-

Cambrian period. Tropical forests cover the area, and the 

coastal plain has quaternary coastal sediments of fluvial-

marine origin. In some areas, the crystalline basement 

becomes apparent [10]. 
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The urban occupation started in plain and mangrove areas. 

However, the city has experienced considerable population 

growth since the 1950s, intensified in the 1970s, with the 

economic development due to industries, port-related 

activities, civil constructions, and tourism. Consequently, the 

price of land increased sharply, and people with low income 

started to build their houses in steep areas, on cheap but 

improper terrain [10]. 

To analyze the urban sprawl of Guarujá four images of 

Landsat satellites from the years 1990 (Landsat 5), 2013 

(Landsat 8), 2020 (Landsat 8), and 2021 (Landsat 8) were 

acquired and preprocessed. Using an orthophoto with 1-meter 

of spatial resolution and eCognition software, the Vila Baiana 

neighborhood was classified accordingly to the types of soil 

covers (ceramic roof, concrete roof, vegetation). 

The satellite images were pre-processed, which consisted of 

two steps: pansharpening and orthorectification. Both 

processes were developed using ArcGIS and ENVI software. 

The pansharpening operation provided an image with the best 

spatial resolution from the panchromatic band while retaining 

the spectral content from the multispectral bands. Landsat 5 

images do not have a panchromatic band, therefore, the 

pansharpening processes were performed exclusively for 

Landsat 8 images. The Gram-Schmidt method was chosen 

due to its improvement for the best distinction of objects 

(vegetation, urban area, sand/bare soil, water) in the scene 

[11]–[14] The image segmentation and the sample 

acquisition were performed using the eCognition software. 

The multiresolution segmentation was performed using the 

following parameters: shape 0.1 and compactness 0.5. 

The algorithm CART, implemented in the eCognition 

software, was used to extract the most relevant attributes, 

generating a decision tree. Based on this decision tree, the 

images were classified using the Object-based Image 

Analysis (OBIA) paradigm. The OBIA paradigm extracts 

semi-supervised information from satellite images. It clusters 

similar objects, considering the pixel information and its 

neighbors [15], [16]. 

To improve the distinction between the urban area and the 

vegetation, the Normalized Difference Vegetation Index 

(NDVI) was calculated. The NDVI is used to differentiate the 

vegetation areas from the non-vegetation areas. The leaves 

have a strong reflectance in the near-infrared band and a weak 

reflectance of chlorophyll and other leaf pigments in the 

visible wave band red  [17], [18]. The NDVI formula is 

presented in equation 1, and the temporal analysis of 

vegetation changes using NDVI is shown in Figure 3. 

𝑵𝑫𝑽𝑰 =
(𝑵𝑰𝑹−𝑹𝒆𝒅)

𝑵𝑰𝑹+𝑹𝒆𝒅
                                (1) 

The Vila Baiana classification characterized the different 

covers, such as types of roofs, roads, and vegetation. An 

orthophoto with 1 m of spatial resolution was used. Due to 

the different sizes of the objects in the scene, two 

segmentation levels were applied: level 1 to discriminate 

larger objects, such as blocks and streets, and level 2 to 

identify the types of roofs and vegetation cover. The first 

level consisted of the distinction between blocks and streets. 

A multiresolution segmentation was performed using a 

thematic layer and the following parameters: scale 500, shape 

0.9, and compactness 0.5. Following, the “elliptic fit” 

attribute was performed to identify if an object fits in an 

elliptic with similar proportions, in which 0 means that the 

object does not fit, and 1 means it fits. The block objects 

range from 0.6 to 0.8. Afterward, using the “assign class” 

algorithm, two threshold conditions were defined: objects >= 

0.6 are assigned as blocks, and objects <= 0.1 are assigned as 

roads.  

The second segmentation level is performed to identify 

smaller objects, such as types of roofs and vegetation cover. 

In segmentation Level 2, the class Blocks were used as a 

filter, meaning that the segmentation procedure occurs only 

within the blocks. The multiresolution segmentation 

algorithm was applied, using the following parameters: scale 

30, shape 0.1, and compactness 0.5. The last step before the 

classification was the sample acquisition. It consists of the 

selection of image features that correctly represent the class 

objects. Five classes were described: ceramic roofs, concrete 

roofs, roofs with different materials (named “other roofs”), 

arboreal vegetation, and grass vegetation. Data mining is 

important to determine the most relevant attributes to classify 

the image. This study used the CART algorithm, available on 

the eCognition platform. It results in a decision tree 

containing the variables and determining thresholds for the 

identification and separation of each class. And the last step 

consists of the application of thresholds and variables to 

classify the image. 

 

3. RESULTS AND DISCUSSION 

 

The urban sprawl is a direct consequence of population 

growth and the development of Guarujá municipality. During 

the past 31 years (1990-2021), deforestation of native 

vegetation increased to open space for urbanization. Figure 2 

presents the temporal analysis of urban sprawl for 1990, 

2013, 2020, and 2021.   

 
Figure 2. Urban sprawl from 1990, 2013, 2020, and 2021. 

Analyzing Figure 2, it is possible to realize that was an 

intense increase in the urban area from 1990 to 2021, 

represented in gray. Moreover, the urban sprawl continues to 
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intensify rapidly since, in 2021, the increase was 7,9% above 

the amount in 2020. Furthermore, the removal of natural 

vegetation continues, giving space to the city's expansion. 

Table 1 shows the built-up area occupied by the town and the 

vegetation cover for the years 1990, 20213, 2020, and 2021. 

Year Urban area (km²) Vegetation (km²) 

1990 36.25 96.00 

2013 37.61 89.91 

2020 43.76 88.73 

2021 47.25 84.25 

Table 1. Variation of urban and vegetation area (km²) from 

1990 to 2021. 
Analyzing Table 1 it is possible to determine a correlation 

between the increase in the urban areas and the decrease in 

vegetation-covered areas. From 1990 to 2021, the 

urbanization process increased by 30%, while the vegetation 

area suffered a 12% reduction. The development of urban 

areas destroys vegetation. To improve the distinction between 

the urban area and the vegetation, the Normalized Difference 

Vegetation Index (NDVI) was calculated. 

Figure 3. Temporal analysis of variation in NDVI for 1990, 

2013, 2020, and 2021. 
The analysis of Figure 3 shows the vegetation changes in the 

past 31 years. The water, represented in red, has low 

reflectance and, consequently, lower values of NDVI. The 

colors orange and yellow characterized the urban areas 

according to the degree of urbanization (high level of 

urbanization and medium level, respectively). The vegetation 

is represented by green: the light green areas have lower 

biomass than those in dark green. 

In the 1990 classification, it was observed that vegetation 

cover is denser and spreads over most of Guarujá 

municipality. Dark green is the predominant color, meaning 

that most forest areas were preserved. However, in 2021, a 

reduction of the vegetation cover areas and the green-leaf 

density is perceptible. Few forest areas are maintained, and 

the leaf-area density has decreased. 

Those people who cannot afford a house or land in the central 

part of Guarujá start to build their houses on the slopes, 

favoring deforestation [19], [20]. The weight of several 

constructions on steep slope areas, associated with improper 

water drainage and deforestation, decreases the slope stability 

and increases the risk of accidents to the population [20]–

[22]. Vila Baiana neighborhood is one of these areas, where 

several houses were improperly constructed in declivity 

areas, which are commonly affected by landslides. The 

identification of different constructions, soil, and covers of 

the Vila Baiana neighborhood is presented in Figure 4. 

Figure 4. Classification of Vila Baiana 

Figure 4 identifies several constructions built on the edge of 

the arboreal vegetation, especially in steep slope areas.  

The houses localized in slope areas, meaning on the edge of 

arboreal vegetation, are mostly of the concrete roof 

(totalizing 74 m²) and just a few with a different type of roof 

(“other roofs” in the classification). In these slope areas, it is 

not possible to identify roads, but many houses are observed 

in a small space. The roads are well delimited in the flat land 

but not on the upper slopes. It indicates any pavemented street 

in high declivity areas, becoming difficult to access the area. 

Notwithstanding, the ceramic roof class is the less 

representative roof type, with only 8.254 m² of constructed 

area. They occur in places where it is still possible to 

determine the blocks and the roads, meaning that these areas 

are part of the urban planning of Guarujá municipality. 

The grass vegetation predominates in two blocks, and both 

are soccer fields for the community to play. The arboreal 

vegetation occurs mostly in steep slope areas, with only a few 

polygons mixed with the constructions.  

The error matrix was calculated to assess the classification 

accuracy, as presented in Figure 5.  

 
Figure 5. Matrix error of Vila Baiana classification. 
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The error matrix shows a spectral confusion between the 

classes “Other roof” and “Concrete roof.” Analyzing the 

orthophoto, it is observed that some concrete roofs are lighter 

than others. The material used in these constructions probably 

has a similar composition to those used by the class “Other 

roof,” justifying the confusion in the classification process.  

Moreover, spectral confusion between the grass vegetation 

and the concrete roof is observed. Most polygons wrongly 

classified as grass vegetation are in areas with high declivity 

because these sections were covered with forest, and to build 

houses, the trees were removed, and the grass is regrowth. 

Therefore, a grass pixel in a polygon can confuse the 

algorithm, classifying it incorrectly. Due to the spectral 

similarity, the “Arboreal vegetation” and “Grass vegetation” 

also presented some confusion. Despite some incorrectly 

classified polygons, the global accuracy is 0.96, meaning a 

good accuracy of the classification processes.  

 

5. CONCLUSIONS 

 

The temporal analysis of Guarujá from 1990 to 2021 

indicates an increase in urban areas. Consequently, a decrease 

in vegetation is observed. The CART algorithm correctly 

distinguished the urban areas, the vegetation, and the water. 

Moreover, the NDVI provided important information about 

environmental degradation and loss of biomass. The advance 

of urban sprawl and land prices induce people to build houses 

in steep slope areas. The classification of Vila Baiana, using 

the orthophoto, allows us to discriminate the different covers 

in the neighborhood. Its identified low build standards, 

several constructions near each other, and no paved road. 

These areas are improper for construction, and anthropic 

changes induce disasters, mostly related to landslides. 
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