Expansão do cultivo da cana-de-açúcar em inconformidade ambiental com as áreas de preservação permanente de cursos d'água entre as safras 2004/2005 a 2009/2010

André Moscardo Salles Almeida Luz ¹
Daniel Alves Aguiar ¹
Bernardo Friedrich Theodor Rudorff ¹

1 Instituto Nacional de Pesquisas Espaciais - INPE Caixa Postal 515 - 12227-010 - São José dos Campos - SP, Brasil {moscardo, daniel, bernardo}@dsr.inpe.br

Abstract. The cultivated sugarcane area in Brazil is estimated around 8 million hectares, occupying 60% of the São Paulo State land area. Otherwise, the Permanente Preservation Areas in water courses occupies approximately 4.48 million hectares in the same State, according to the CONAMA Resolutions (N° 302 and 303). The goal of this work is to analyze the expansion of the sugarcane from the crop years of 2004/2005 to 2009/2010 on environmental nonconformity with the Permanent Preservation Areas in water courses through the remote sensing images.

1. Introdução

O Brasil apresenta condições climáticas e geográficas privilegiadas para as práticas agrícolas. Devido a esse fato, a agricultura sempre foi importante para a economia. A agricultura familiar, ou de grande porte, além de gerar emprego, alimenta a população, gera renda e responde por boa parte da balança comercial brasileira, segundo Vasconcelos et al. (2004). Conforme Goldemberg (2007), a cultura da cana-de-açúcar é de fundamental importância para o agronegócio brasileiro, já que permite produzir açúcar, etanol e energia elétrica.

De acordo com o Instituto Brasileiro de Geografia e Estatística (IBGE), na primeira década do século XXI a área plantada com culturas agrícolas monitoradas pelo Levantamento Sistemático de Produção Agrícola (LSPA) do país aumentou cerca de 30%, chegando a 64 milhões de hectares IBGE (2010).

Desde a safra 2003/2004, o Instituto Nacional de Pesquisas Espaciais, em conjunto com a União da Indústria de Cana-de-Açúcar (ÚNICA), o Centro de Estudos Avançados em Economia Aplicada (CEPEA) da Escola Superior de Agricultura Luiz de Queiróz (Esalq/USP) e o Centro de Tecnologia Canavieira (CTC) mantêm o projeto Canasat, que tem por objetivo mapear as áreas cultivadas com cana-de-açúcar por meio de imagens de satélite de sensoriamento remoto Rudorff et al. (2010).

De acordo com o mapeamento realizado pelo Canasat, o estado de São Paulo, principal produtor de etanol e açúcar do país, aumentou aproximadamente 77% (2,5 milhões de hectares) sua produção, entre as safras 2003/2004 e 2009/2010, tendo como principal objetivo atender à demanda nacional gerada pela inserção de automóveis biocombustíveis no mercado e internacional gerada pelo acréscimo nos preços do açúcar Rudorff et al. (2010).

O crescimento do mercado pelo etanol está ligado, em parte, à sustentabilidade da produção de cana-de-açúcar e a critérios de certificação socioambiental. Dentre os critérios estabelecidos, destacam-se a manutenção das matas nativas e a recuperação das áreas desmatadas, como a preservação das matas ciliares aos rios, lagos, lagoas e reservatórios em áreas de cultivo de cana-de-açúcar. Portanto, para monitoramento da cultura nessas áreas, Rudorff et al. (2010) destacam a importância do uso de imagens de satélite de sensoriamento remoto para realização do mapeamento.

As Áreas de Preservação Permanente (APP) são limitadas e definidas pelas resoluções n.º 302 e 303 do Conselho Nacional do Meio Ambiente (CONAMA). O sentido de preservar foi realizado "[...] Considerando que as Áreas de Preservação Permanente e outros espaços

territoriais especialmente protegidos, como instrumentos de relevante interesse ambiental, integram o desenvolvimento sustentável [...]" BRASIL (1965, 2002). Com a proposta de mudança do Código Florestal, que tramita no Congresso Nacional, as áreas de preservação sofrerão uma diminuição, p.ex., o nível mais alto do rio (área de várzea) não será mais considerado para delimitação da APP e sim o leito regular do rio que, em termos de porcentagem, implicará em aproximadamente em 50% a menos de áreas a preservar.

O objetivo deste trabalho é avaliar a incompatibilidade da expansão do cultivo de canade-açúcar em as áreas de preservação permanente, de acordo com as resoluções CONAMA 302 e 303, por meio de imagens de satélites de sensoriamento remoto e ferramentas de geoprocessamento, a fim de subsidiar a discussão sobre as mudanças propostas no novo código florestal .

2. Materiais e Métodos

Para realizar o mapeamento da expansão da cultura de cana-de-açúcar em incompatibilidade foi preciso, anteriormente mapear as APPs. Com isso, foi montado um banco de dados geográficos (BDG) reunindo os itens necessários para facilitar o mapeamento das feições geográficas que caracterizam os cursos d`água, nascentes, lagos e lagoas naturais e reservatórios artificiais. Dentre os itens, destacam-se: i) as imagens de satélites; ii) grades de modelo numérico de terreno; iii) cartas topográficas; e iv) dados vetoriais da Base Cartográfica Digital do Estado de São Paulo.

A área de estudo escolhida para realização deste trabalho foi o estado de São Paulo, por ser o principal produtor e exportador da cultura da cana-de-açúcar, que por consequência coloca o Brasil como um dos líderes mundiais, Figura 1.

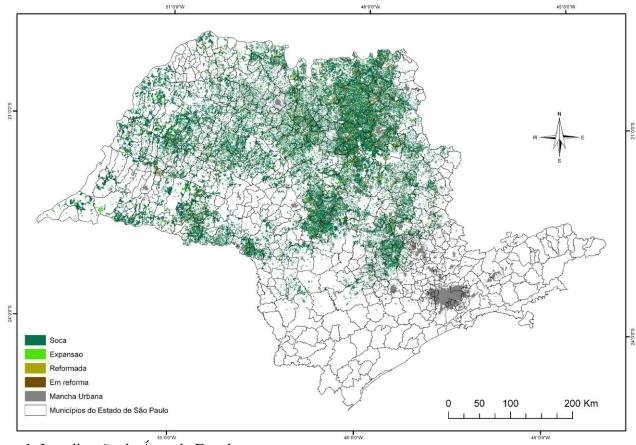


Figura 1. Localização da Área de Estudo

Os mapas com a distribuição espacial da cultura de cana-de-açúcar, desde a safra 2003/2004 para o estado de São Paulo, bem como os dados tabulares por classe para o mapeamento, estão disponibilizados no site: http://www.dsr.inpe.br/laf/canasat/. Para o mapeamento de inconformidade ambiental foi utilizada a classe expansão desde o ano/safra 2004/2005 até 2009/2010.

A tabela 1 ilustra as expansão da cana-de-açúcar para cada ano/safra analisado. Nota-se que na safra 2007/2008 a área de expansão dobrou em relação ao ano/safra interior, esse aumento deve-se a inserção de automóveis bicombustíveis no mercado interno e do aumento do preço do açúcar no mercado externo.

Tabela 1. Área de expansão de cana-de-açúcar para cada ano/safra

Ano/Safra	Área de Expansão (ha)
2004/2005	112.310
2005/2006	205.958
2006/2007	305.603
2007/2008	636.814
2008/2009	661.874
2009/2010	321.801

Para auxiliar na identificação das áreas de cana-de-açúcar em APP, foram utilizadas imagens do sensor HRC, com resoluções espectral de 0,50 – 0,80 μm, espacial de 2,5 metros, temporal de 130 dais e radiométrica de 8 bits e uma área imageada de 27 Km (Nadir), do satélite CBERS-2B, realizado em parceria com a China, de órbita heliossíncrona, localizado a 778 Km de altitude e um tempo de duração da órbita de 100 min e com horário de passagem as 10:30 em um período de revisita de 26 dias Epiphanio (2009) (Figura 2). Para as áreas cujas imagens HRC estavam com cobertura excessiva de nuvens, a interpretação foi realizada com base no aplicativo Google Earth.

2.1 Identificação das áreas de não conformidade ambiental da classe expansão da canade-açúcar entre as safras 2004/2005 a 2009/2010.

A inserção do mapa da expansão do cultivo da cana-de-açúcar sobre as imagens HRC e as áreas de APP (Figura 4) permitiu identificar as áreas de não conformidade da classe selecionada para o mapeamento. A fim de evitar erros de inclusão e exclusão, a diferença espacial das imagens TM/Landsat, utilizadas para o mapeamento do cultivo da cana-de-açúcar e das imagens HRC foi considerada.

Figura 2. Imagem HRC de parte da área de estudo.

Figura 2.1. Imagem HRC e delimitação das áreas de preservação permanente, de acordo com as resoluções CONAMA.

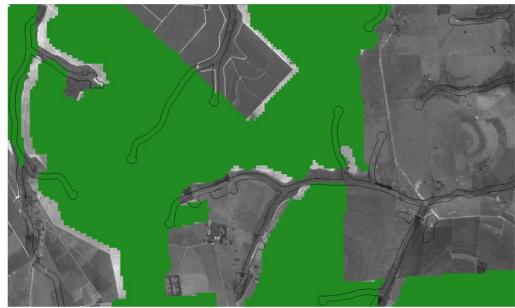


Figura 2.2 . Imagem HRC, delimitação das áreas de preservação permanente, de acordo com as resoluções CONAMA e o mapa da expansão da cana-de-açúcar.

3. Resultados e discussões

Os resultados serão discutidos e apresentados, tanto em escala municipal, quanto para os Escritórios de Desenvolvimento Rural e também para as Regiões Administrativas do Estado de São Paulo

A figura 3 ilustra o resultado do mapeamento da incompatibilidade da expansão da cana de açúcar de acordo com a metodologia adotada.

Figura3. Imagem HRC, delimitação das áreas de preservação permanente (linhas em preto), de acordo com as resoluções CONAMA, mapa da expansão da cana-de-açúcar (em verde) e as áreas de não conformidade ambiental (em vermelho).

As figuras 4 e 5 representam o mapa da expansão da cana-de-açúcar em inconformidade ambiental. Pode-se observar que as principais áreas identificadas em inconformidade com as resoluções CONAMA (nº 302 e 303) estão localizadas na porção centro-oeste do estado de

São Paulo, que em geral concentra as novas áreas do cultivo da cana-de-açúcar no estado. A região leste do estado, tradicional produtora de cana-de-açúcar (Silva et al., 2010), tem menos áreas em inconformidade ambiental.

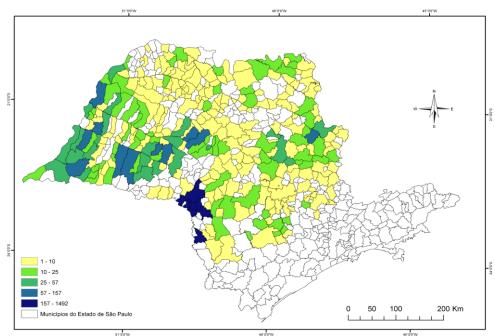


Figura4. Área de expansão da cana-de-açúcar em inconformidade ambiental nos municípios do estado de São Paulo.

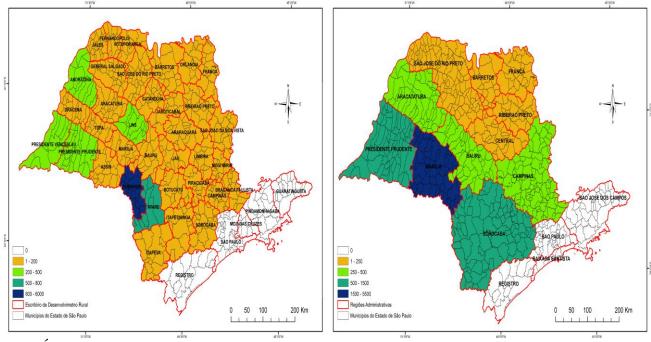


Figura 5. Áreas de expansão da cana-de-açúcar em inconformidade ambiental por Escritórios de Desenvolvimento Rural e para as Regiões Administrativas do Estado de São Paulo.

Em 183 municípios não foi identificada inconformidade ambiental da expansão da canade-açúcar em APP, com relação aos Escritórios de Desenvolvimento Rural Registro, São Paulo, Mogi das Cruzes, Pindamonhangaba e Guaratinguetá. As Regiões Administrativas de São José dos Campos, São Paulo, Baixada Santista e Registro, de acordo com o Projeto Canasat, também não possuem cana-de-açúcar plantada até a safra 2009/2010.

Na Tabela 2 é apresentado o resumo do mapeamento das áreas de não conformidade.

Tabela 2. Área de não conformidade da expansão da cana-de-açúcar em áreas de APP em curso d'água para o Estado de São Paulo

(a) Área das expansões da cana- de-açúcar (ha)	(b) APP (ha)	(c) Área de não conformidade ambiental (ha)	c/a %	c/b (%)
2.244.360	4.478.549,40	10.642	0,47%	0,23%

O mapeamento realizado mostrou que, do total da expansão de cana-de-açúcar compreendendo as safras 2004/2005 até 2009/2010 (2.244.360 milhões de hectares), 0,47% estão plantadas em não conformidade ambiental com áreas de APP (curso d'água, nascente e reservatórios artificiais). Verificou-se também que 0,23% (10.642 ha) do total de APP (4,48 milhões de ha) está ocupada com a expansão da cana-de-açúcar.

A Tabela 3 apresenta os dez municípios do Estado de São Paulo que foram encontradas maiores áreas de inconformidade ambiental.

Tabela 3. Municípios com maiores áreas de inconformidade ambiental em relação a expansão da cana-de-açúcar.

Municípios	a) Área de expansão da cana-de-açúcar (ha)	b) Área de APP (ha)	c) Área em inconformidade (ha)	c/a %	c/b %
Bernardino de Campos	3.123	2861,52	1492,17	0,48	0,52
Piraju	2.906	1254,59	756,79	0,26	0,60
Santa Cruz do Rio Pardo	13.010	1589,96	750,98	0,06	0,47
Timburi	217	685,02	746,08	3,44	1,09
Chavantes	1.723	348,1	746,42	0,43	2,14
Presidente Venceslau	8.676	1529,53	124,76	0,01	0,08
Rancharia	16.463	1842,4	100,26	0,01	0,05
Martinópolis	19.331	2018,15	90,99	0,00	0,05
Mirante do Paranapanema	7.085	1567,13	87,80	0,01	0,06
Tambaú	8.584	892,85	80,13	0,01	0,09

4. Considerações Finais

O presente trabalho apresentou os resultados do mapeamento das áreas de não conformidade da expansão do cultivo da cana-de-açúcar, entres as safras 2004/2005 a 2009/2010, com as áreas de preservação permanente em curso d'água.

É importante ressaltar o monitoramento realizado pelo projeto Canasat por fornecer a distribuição espacial da colheita da cana-de-açúcar na região centro-sul do Brasil e também a importância das imagens de alta resolução utilizadas neste trabalho, que são distribuídas de forma gratuita pelo INPE.

Com a utilização de imagens de satélites de sensoriamento remoto e técnicas de geoprocessamento, foi possível identificar as áreas de inconformidade ambiental de expansão da cana-de-açúcar de acordo com as resoluções CONAMA (nº 302 e 303) no estado de São Paulo.

Referências Bibliográficas

BRASIL. Lei n.º 4.771, de 15 de setembro de 1965. Institui o novo Código Florestal. **Diário Oficial da União**, Brasília, DF, 16 de set. 1965. Disponível em: http://www.planalto.gov.br/ccivil_03/Leis/L4771.htm

BRASIL. Resolução n.º 302, de 20 de março de 2002. Dispõe sobre os parâmetros, definições e limites de Áreas de Preservação Permanente de reservatórios artificiais e o regime de uso do entorno. **Diário Oficial da União**, Brasília, DF, 13 de mai. 2002 a. Disponível em: http://www.mma.gov.br/port/conama/res/res02/res30202.html

BRASIL. Resolução n.º 303, de 20 de março de 2002. Dispõe sobre parâmetros, definições e limites de Áreas de Preservação Permanente. **Diário Oficial da União**, Brasília, DF, 13 de mai. 2002b. Disponível em: http://www.mma.gov.br/port/conama/res/res02/res30302.html

EPIPHANIO, J. C. N. CBERS: estado atual e futuro.. In: Simpósio Brasileiro de Sensoriamento Remoto., 2009, Natal. **Anais** do XV Simpósio Brasileiro de Sensoriamento Remoto.. São José dos Campos: Instituto Nacional de Pesquisas Espaciais, 2009. v. 15. p. 2001-2008. Disponível em < http://marte.dpi.inpe.br/col/dpi.inpe.br/sbsr@80/2008/11.18.12.46/doc/2001-2008.pdf> Acesso em: 14 nov. 2012.

Goldemberg, J. Ethanol for a sustainable energy future. Science 2007, 315, 808-810.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). **Levantamento sistemático da produção agrícola** - dezembro de 2010. Rio de Janeiro-RJ: IBGE, v. 23, n. 12, 2010. 80 p. Disponível em: http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/estProdAgr_201012.pdf.

RUDORFF, B. F. T.; SUGAWARA, L. M. Mapeamento da cana-de-açúcar na Região Centro-Sul via imagens de satélite. **Informe Agropecuário** (Belo Horizonte), v. 28, p. 79-86, 2007.

RUDORFF, B. F. T.; AGUIAR, D. A.; SILVA, W. F.; SUGAWARA, L. M.; ADAMI, M.; MOREIRA, M. A. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo State (Brazil) using Landsat data. **Remote Sensing**, v. 2, n. 4, p. 1057-1076, 2010

SILVA, W. F.; AGUIAR, D. A.; RUDORFF, B. F. T.; SUGAWARA, L. M. Project: monitoring of the sugarcane cultivation area in South Central Brazil. In: **ISPRS**, 2010, Viena. Proceedings of the ISPRS TC VII Symposium Part 7B. Viena: ISPRS, 2010. v. 38. p. 535-540.

Vasconcelos, L.C de S.; Nascimento, A. Q. de; Moreira, M. C.; Alves, M. P. de B. A produção do Estado do Mato Grosso: um levantamento estatístico da produção regional, norte e sul, dentro da proposta de divisão do Estado. In: Encontro de Geografia de Mato Grosso e Seminário de Pós-Graduação de Geografia, II, I Mato Grosso, 2004.