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Abstract. Monitoring of the Brazilian Cerrado biome is crucial in order to fully understand its ecosystem 
functions, its response to changes, and to keep track of ongoing change processes in one of the world’s 
biodiversity hotspots. The huge extent, heterogeneity and complex diversity of the Cerrado makes monitoring 
very challenging, but optical remote sensing based approaches have been shown to be valuable to tackle this 
task. We explored the potential of Landsat data to derive seasonal phenological profiles for the main Cerrado 
physiognomies, in order to use this information for classification purposes. Therefore we gathered Landsat TM, 
ETM+ and OLI data from the open Landsat data archive. To overcome data gaps in the time series, we applied a 
Gaussian kernel based convolution filter on Tasseled Cap transformed Landsat data. Thus, it was possible to 
derive comprehensible phenological profiles for distinct Cerrado physiognomies at Landsat spatial resolution. 
We used these derived seasonal profiles to train a Support Vector Machine classification model in order to map 
the main Cerrado physiognomies around Brasília, DF. Although classification errors were observed between 
similar classes in terms of their vegetation structure and density, we were able produce an accurate map that 
captures the spatial patterns of the vegetation physiognomies. 
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1. Introduction 

The Brazilian Cerrado is a highly heterogeneous biome that is rich in biodiversity with 
approximately 160,000 species in flora and fauna (Furley 1999). Following the Amazon it is 
the second largest biome in Brazil with an extent of around 2 million km² (Ratter et al. 1997). 
It is characterized by gradients in vegetation heights and tree densities, which are mainly 
influenced by soil traits and fertility, climatic seasonality and long term fluctuations as well as 
the frequency of fire events (Oliveira-Filho and Ratter 2002). The resulting vegetative 
formations range from open grasslands and shrublands to dense forests and can be 
comprehended to structurally coherent vegetation physiognomies. Large scale conversions 
from natural to agricultural land already affected around 40% of the Cerrado and land use 
models even suggest an increase in future deforestation rates (Ferreira et al. 2012). This rapid 
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land cover change is one of the reasons why the Brazilian Cerrado was defined as one of the 
global biodiversity hotspot that needs to be under special focus in terms of assessment and 
conservation planning (Myers et al. 2000). 

To keep track of the changes in the Cerrado, to support decision makers and to better 
understand ongoing processes, accurate mapping and monitoring is crucial (Sano et al. 2010). 
Even though field observations are inevitable for detailed local understanding of processes or 
for calibration and validation purposes (de Miranda et al. 2014), remote sensing data have 
been shown to be adequate for large scale assessments (Ferreira et al. 2004, Asner et al. 
2005). Various Cerrado physiognomy mapping approaches using optical, radar or a 
combination of both types of remote sensing data have already been shown to be successful 
(Sano et al. 2005). However, these approaches are often time and labor intensive especially 
for wide biome assessments (Sano et al. 2010). Other studies used the temporal domain of 
frequently acquired remote sensing data like AVHRR or MODIS to make use of remote 
sensing derived phenologies (Ratana et al. 2005). Nevertheless, this approaches often lack 
spatial detail which is crucial for a detailed mapping of the complex vegetation heterogeneity 
in the Brazilian Cerrado. This is especially necessary for change detection approaches in order 
to assess environmental policy decisions and anthropogenic impacts (Jepson 2005). The 
opening of the Landsat archive enables to explore multi-temporal data from the past with a 
sufficient spatial resolution, while still covering large extents. Furthermore, the launch of the 
Landsat 8 and Sentinel-2 satellites assures continuous acquisitions of comparable data in the 
future. Even though Landsat data have a sufficient spatial resolution, its temporal resolution 
of 16 days (8 days when two sensors are combined) is not appropriate to derive continuous 
phenological profiles, especially when considering the low clear data availability due to cloud 
contamination (Sano et al. 2007). 

To overcome these limiting factors, we created a phenological time series with Landsat 
spatial resolution, by approximating original Tasseled Cap transformed Landsat data 
comparable to the function fitting approach in TIMESAT (Jonsson and Eklundh 2004). 
Instead of applying a Savitzky-Golay or a double logistic function, we approximated our data 
with a weighted ensemble of Gaussian convolution filters. We tested the potential of the 
derived phenological profiles by using them to train a Support Vector Machine classification 
(Vapnik 1998), as this machine learning algorithm has been shown to be capable of solving 
complex non-linear classification problems (van der Linden et al. 2007). Thus our objectives 
are to analyze i) if it is possible to derive comprehensible seasonal phenological profiles from 
Landsat imagery using a Gaussian kernel convolution filter and ii) if these derived profiles 
allow us to distinguish the main Cerrado physiognomies in selected study areas around 
Brasília, DF. 
 
2. Methodologies 

The focus of this research is on a study area in central Brazil, covering Cerrado vegetation 
within the Distrito Federal (Figure 1). The selected sites include all the main Cerrado 
physiognomies and are located in protected areas. 

 
2.1 Cerrado Physiognomies  

As reference data we used two maps of protected areas around Brasília, DF that contain 
the main Cerrado physiognomies, classified by means of their vertical and horizontal 
vegetation density, as described by Ribeiro and Walter (Ribeiro and Walter 2008). The first 
map covers the whole extent of Parque Nacional de Brasília (PNB) with an area of 
approximately 30 000 ha. The map is based on a vegetation map and was refined in 2001 
through visual interpretation of two Landsat scenes from 2001 (July and September), two 
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high-resolution (4m spatial resolution) Ikonos scenes aerial photographs and field survey 
(Ferreira et al. 2007). It was manually up-dated in 2012 through visual interpretation of aerial 
photography from 20091. It includes 13 classes (including physiognomy subclasses) which are 
representative for the Cerrado biome (Ferreira et al. 2007). The second map covers an area of 
approximately 4400 ha in the Reserva Ecológica do IBGE. It contains 20 classes, including 
subclasses of physiognomies. By using high resolution imagery and field data from the nearby 
Jardim Botânico de Brasília we added an area of 56 ha of Cerradão to the map mosaic, as this 
major Cerrado physiognomy was not covered in the other maps. Our final reference product 
ended up with 7 classes ranging from open grasslands to dense forests: Campo Limpo, Campo 
Sujo, Campo Cerrado, Cerrado Sensu Stricto, Cerrado Denso, Cerradao and Mata de Galeria 
(Figure 1).  

 

 
Figure 1. Study area covering Brazilian Cerrado physiognomies around Brasília, DF. 

 
2.2 Phenological Landsat Time Series 

In order to derive phenological profiles in the selected study sites we gathered all useful 
Landsat TM and ETM+ Level 1T corrected data (path: 221, row: 071) that have been 
recorded between January 2000 (DOY 007) and September 2014 (DOY 221), resulting in a 
total of 431 overpasses. The data were converted to top of atmosphere reflectance values and 
cloud masks were derived using the FMASK algorithm (Zhu and Woodcock 2012). The 
converted data were then transformed using the tasseled cap (TC) transformation coefficients 
for top of atmosphere reflectance, which are recommended for applications where 

                                                 
1 Data from the Image Processing and GIS Laboratory (LAPIG), Federal University of Goiás (UFG). 
www.lapig.iesa.ufg.br 
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atmospheric correction approaches are not feasible (Huang et al. 2002). Furthermore, has the 
tasseled cap transformation been shown to be valuable for phenology based classification 
approaches (e.g. Dymond et al. 2002). For further analysis we chose the transformed TC 
greenness (TCgreen) and wetness (TCwet) values, as they are known to correlate with vegetation 
structure  and vegetation/soil water content (Crist and Kauth 1986). As various factors like 
cloud contamination or sensor errors make it difficult to derive consistent phenological 
profiles from Landsat data, we used a function fitting approach to fill the data gaps in our 
timeseries. We used a Gaussian kernel based convolution filter approach to approximate the 
given clear observations into a dense 8-days-sampled timeseries. Gaussian kernel based 
convolution filtering is comparable to a weighted moving window average filter, where the 
weights are given by a Gaussian function: 

 
1

√2
 (1)

in which  defines the smoothness or sharpness of the fitted function. For outlier (noise) 
detection in our observations we used a relatively smooth Gaussian kernel with  = 5*8 days. 
The kernel includes all coefficients of the +/- 3*	  interval, i.e. an overall kernel size of 31 
observations (15 to the left and 15 to the right), resulting in a kernel size of 31x8 = 248 in 
terms of days. The weights for each observation are much higher around the observed pixel 
and decrease towards the end of the kernel. Given this approximation, we basically follow the 
TIMESAT (Jonsson and Eklundh 2004) approach and eliminate all real observations that are 
substantially different from the approximation. The threshold for the difference from the 
approximation is measured in units of standard deviation of the timeseries. For our case study 
we chose one standard deviation as outlier detection threshold. Following the outlier 
elimination, we used an ensemble of multiple Gaussian kernel based convolution 
approximations to derive the final phenological profiles. We applied kernels with sigma=3x8, 
5x8, 7x8 days. The final approximation is then a weighted average of the three individual 
approximations, where the weights depended on the original data density within the given 
kernels. This has the advantage that in sparse situations, the approximation of a smaller (i.e. 
sharper) kernel with lots of missing observations, can be corrected by a larger (i.e. smoother) 
kernel seeing potentially more observations. In that sense, our approach is adaptive to data 
availability. 

 
2.4 Cerrado mapping 

The derived TCgreen and TCwet profiles were truncated to represent one phenological 
season (July 2009 – June 2010), which corresponds to the date of the reference map 
actualization. We used these profiles to train a Support Vector Machine (Vapnik 1998) 
classification (SVC). Therefore 300 trainings pixel were randomly selected from each of the 
large classes in the physiognomy map (Campo Limpo, Campo Sujo, Campo Cerrado and 
Cerrado Sensu Stricto), whereat in the smaller classes (Cerrado Denso, Cerradão and Mata de 
Galeria) 25, 25 and 100 samples were randomly chosen. This sampling strategy resulted in a 
total of 1350 trainings pixel. A SVC model was trained using the sampled training pixel and 
its regularization parameters were optimized via a cross-validated grid search. Afterwards the 
model was applied to classify the complete study area of PNB and IBGE. All steps were 
performed with the EnMAP-Box Version 2.03 (Rabe et al. 2014) using the imageSVM 
implementation (Rabe et al. 2014) which is based on LIBSVM (Chang and Lin 2011). The 
accuracy of the result was validated by visual interpretation of 400 randomly stratified drawn 
pixel from the classification map and high resolution imagery in Google Earth. The results 
were comprehended in a confusion matrix and the accuracies adjusted with respect to the 
actual area they cover in the classification result (Congalton and Green 2008).  
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3. Results and Discussion 
The application of the Gaussian convolution filter led to an approximation of 

phenological profiles (season 2009-2010) for each pixel. Based on the reference vegetation 
map we averaged the profiles for each physiognomie (Figure 2). The distinct profiles 
underline our assumption that the phenologies, as derived from remote sensing data, are 
physiognomy specific and differ from each other. The differences can be observed in the 
TCgreen as well as in the TCwet based phenological profiles. The profiles are comprehensible as 
they follow the typical seasonal climate trend, with high precipitations from October to April 
and very dry months from May to September (Ferreira et al. 2004). This goes along with 
findings in similar studies (Ratana et al. 2005). The trends show a green-up starting in 
October and a green peak between December and February, which differs in the distinct 
physiognomies. However, the TCwet trend is much smoother and stretched over the whole rain 
season with a peak around April. It can be observed that the shape of the TCgreen seasonal 
trend is quite similar in all physiognomies, but shifted to the beginning of the rain season in 
denser vegetation along with higher values. The TCwet seasonal trend, which can be 
interpreted as proxy for water content, flattens out with higher vegetation density. Very dense 
vegetation structures like in the Cerradão or Mata de Galeria show highest TCwet values with 
the smallest range in seasonality compared to the sparser physiognomies. These differences in 
the characteristics of both indices stress the added value of using them in combination as 
classification input. 

 

 
Figure 2. TCgreen and TCwet based phenological profiles, averaged for each physiognomie in 
the reference map.  

The output of the SVM classification model is shown in Figure 3. It reveals the potential 
of utilizing the phenological profiles on Landsat spatial resolution for physiognomies 
distinction. All large scale spatial physiognomie patterns within the study areas could be 
clearly derived by their phenological profiles. Although the Gaussian kernel convolution filter 
was enabled to overcome data gaps, some artifacts of sensor errors, such as SLC-off regions 
of Landsat ETM+, remain in the final product. This might be due to very sparse data 
availability. Applying a convolution filter that also considers adjacent pixel values could help 
to solve this issue, but it would also generalize the final result and should therefore be decided 
on with respect to the application of the final map. 
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Figure 3. Reference and classified physiognomy maps of the study area: a) Physiognomy 
reference map PNB, b) Classification PNB, c) Physiognomy reference map IBGE, d) 
Classification IBGE. Grey areas are masked out because of a lack of reference data or classes 
that do not fit in the described physiognomie scheme. 

A hard validation of the classification showed an overall accuracy of 61%, although most of 
the class confusions occurred between neighboring classes. However, as the defined classes 
mostly follow a vegetation density gradient (from Campo Limpo to Cerradão) it poses a 
challenge for describing it with hard classes. By applying a more tolerant validation approach 
(i.e. allowing pixels to be assigned to the adjacent classes within the vegetation gradient) we 
achieved an overall accuracy of 88%. Furthermore, the scale mismatch between the vector 
based reference map and a Landsat pixel based classification approach might induce errors in 
the model training. For example a Campo Limpo polygon (used to derive reference pixels for 
model training) could contain smaller patches of denser vegetation, which by definition 
belong to other physiognomies. Using pixel based reference data would further improve the 
proposed method. 
 
 
4. Conclusion 

We analyzed the potential use of Landsat derived phenological profiles to map the 
gradient of vegetation densities in the Brazilian Cerrado around Brasília, DF. It was possible 
to approximate typical phenological profiles for each Cerrado physiognomy by applying a 
Gaussian kernel based convolution filter on Tasseled Cap transformed Landsat data. Thus we 
were able to overcome most of the data gaps, which are due to sensor defects and cloud 
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contaminated observations. The derived pixelwise profiles enabled us to train a Support 
Vector Classification model, which could be used to produce a map that captured the spatial 
patterns of the vegetation physiognomies in the observed study area. Highest errors were 
identified between structurally more similar classes. Although we achieved modest results 
these were mostly due to generalisation in the reference data. We could, however, highlight 
the potential of Landsat’s spatial resolution in terms of mapping the complexity of the 
Cerrado vegetation density gradient, especially when taking the temporal domain into 
account. Future research should focus on the applicability of the proposed method in terms of 
transferability in the temporal domain, for example by deriving seasonal phenological metrics. 
Furthermore, should the spatial transferability of the approach be evaluated, as it might be 
usefull for frequent large scale Cerrado assessments. The open Landsat data archive, the new 
Landsat 8 and Sentinel sensors and the increasing trend in big data handling and processing 
performance facilitate these steps.  
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