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Abstract. Crop recognition from remote sensing images is a challenging task due to the dynamic behavior of 

different crops. The spectral appearance of a given crop changes over time because it is highly related to the 

phenological stage at each epoch or season, making it necessary to use sequences of images for a correct 

classification. Conditional Random Field (CRF) approaches have been increasingly applied for crop recognition 

due to their ability to consider contextual information in both, the spatial and the temporal domains. This work 

proposes a spatio-temporal CRF for modelling different crops and their respective phenological stages from a 

sequence of Landsat 5/7 images. The spatial context is introduced using a contrast-sensitive smooth labeling 

method.  The interactions in the temporal domain are modeled based on the joint posterior probability of class 

relations between adjacent epochs given the observed data. These class relations are learnt using a Random Forest 

(RF) classifier. Comparisons between mono-temporal classification using RF, CRFs considering only spatial 

context information and the proposed model are presented. Furthermore, an analysis on how the sequence image 

length as well as the starting epoch affects the classification accuracy is carried out. Improvements in the overall 

accuracy of up to 12% and 6% over the RF and mono-temporal CRF approaches, respectively, are obtained using 

the proposed model considering sequences of up to 9 images. 

 

Keywords: remote sensing, probabilistic graphical models, crop recognition, Landsat images. 

 

1. Introduction 

 In recent years, agricultural monitoring has become more important for a wise management 

of natural resources due to constant population growth and urban expansion. Prediction of 

yields, estimation of food production and precise and accurate agricultural statistics are crucial 

in order to anticipate the market behavior. Remote sensing data provide a cost-effective tool for 

agricultural monitoring and management. The use of multi-temporal images sequences has 

shown significant improvement in classification of crops and vegetation (Lu & Weng, 2007), 

because image sequences can capture changes in spectral appearance over time which are 

related to different phenological stages of the plants. 

 Conditional Random Field (CRF) approaches are considered to be very suitable for crop 

recognition due to their capability to consider contextual information (in the spatial and the 
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temporal domain), which is particularly important for crop recognition because different crops 

have different phenological cycles based on their specific physiology, which cause changes in 

their spectral appearance over time. In spite of these benefits, just a few CRF-based approaches 

have been proposed. Hoberg & Müller (2011) used CRFs for spatio-temporal crop classification 

using a site wise feature differences in two epochs to model temporal dynamics and restrict 

class transitions over time. These restrictions, however have shown to be too restrictive for crop 

phenology changes. Later, Hoberg et al. (2015) modeled temporal interactions by a global 

transition matrix using expert knowledge, neglecting any dependency on the data. In 

Kenduiywo et al. (2016), a Dynamic Conditional Random Fields (DCRFs) approach is 

proposed to learn the phenological information from SAR images considering correlation 

between backscattering of crops in the same phenology stage. 

 In this work, a spatio-temporal CRF based approach for recognition of crop types in sub-

tropical areas from a sequence of Landsat images is proposed. Our approach considers smooth 

labeling methods depending on the data for both spatial and temporal interactions. In our case, 

the spectral response of a crop varies significantly during the phenological cycle. For that 

reason, we consider every crop in a certain phenological stage as a unique class. In addition, 

we analyze the influence of the sequence length on the classification results. 

 

2. Modeling spatial and temporal context with Conditional Random Fields 
 

2.1. Conditional Random Fields 
Conditional Random Fields (CRFs), firstly introduced by Lafferty et al. (2001) for one-

dimensional text classification, belong to the family of undirected graphical models. Kumar & 

Hebert (2006) extended CRFs for two-dimensional image classification using discriminative 

models for class associations at individual sites as well as interactions for neighboring sites. Let 

𝐺 = {𝑆, 𝐸} be a graph with a set of nodes 𝑆 and edges 𝐸 and let the observed data from an input 

image be given by 𝒙 = {𝒙𝑖}𝑖∈𝑆, where 𝒙𝑖 is the data from 𝑖𝑡ℎ site. Their corresponding labels at 

the image sites are given by 𝒚 = {𝑦𝑖}𝑖∈𝑆, where 𝒚 is indexed by the nodes of 𝐺 and 𝑦𝑖 belongs 

to a set of classes 𝐿 = [𝑙1, … , 𝑙𝑚]. Then, CRF models the posterior probability 𝑃(𝒚|𝒙) of the 

labels given the data as follows: 

 

𝑃(𝒚|𝒙) =
1

𝑍
[exp (∑ 𝐴(𝑦𝑖 , 𝒙)

𝑖∈𝑆

+ 𝜃𝐼𝑆 ∑ ∑ 𝐼𝑆(𝑦𝑖 , 𝑦𝑗, 𝒙)

𝑗∈𝑁𝑖𝑖∈𝑆

)] (1) 

 

where 𝑍 is a normalizing constant also called as partition function. 𝐴(∙) and 𝐼𝑆(∙) are called 

unary or association potential and pairwise or interaction potential, respectively. The 

association potential measures how likely a site 𝑖 ∈ 𝑆 will take a label 𝑦𝑖 given the observed 

data 𝒙, whereas the interaction potential determines how labels at neighboring sites 𝑖 and 𝑗 

should interact given the data 𝒙. 𝑁𝑖 is the neighborhood of site 𝑖 The parameter 𝜃𝐼𝑆 expresses 

the weight of 𝐼𝑆 relative to 𝐴. 

 

2.2. Multi-temporal CRFs 

In a multi-temporal analysis, neighboring sites in adjacent epochs, which capture changes 

of a crop over time, are also taken into account. Let’s consider a set of 𝑇 coregistered images 

from different epochs, where a site 𝑖 corresponds to the same geographical region in all epochs. 

The observed data of an image site 𝑖 at epoch 𝑡 is denoted as 𝒙𝑖
𝑡 and its corresponding label as 

𝑦𝑖
𝑡 for 𝑡 = 1, … 𝑇 being an epoch in the image sequence. Equation 1 is extended as follows: 
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𝑃(𝒚|𝒙) =
1

𝑍
[𝑒𝑥𝑝 (∑ ∑ 𝐴𝑡(𝑦𝑖

𝑡, 𝒙𝑡)

𝑖∈𝑆𝑡∈𝑇

+ 𝜃𝐼𝑆 ∑ ∑ ∑ 𝐼𝑆𝑡(𝑦𝑖
𝑡, 𝑦𝑗

𝑡 , 𝒙𝑡)

𝑗∈𝑁𝑖𝑖∈𝑆𝑡∈𝑇

 

(2) 

+ ∑ 𝜃𝐼𝑇
𝑡 ∑ ∑ 𝐼𝑇𝑡𝑘(𝑦𝑖

𝑡, 𝑦𝑖
𝑘 , 𝒙𝑡 , 𝒙𝑘)

𝑘∈𝐶𝑖𝑖∈𝑆𝑡∈𝑇

)] 

 

where 𝐴𝑡, 𝐼𝑆𝑡 and 𝐼𝑇𝑡𝑘 are the association, spatial and temporal interaction potentials, resp. 

The temporal interaction potential 𝐼𝑇𝑡𝑘 models the interaction at one site 𝑖 in two adjacent 

epochs, namely 𝑡 and 𝑘. 𝐶𝑖 is the neighborhood of site 𝑖 in adjacent epochs. 𝜃𝐼𝑇
𝑡 ∈ 𝜽𝐼𝑇 =

{𝜃𝐼𝑇
1 , 𝜃𝐼𝑇

2 , … , 𝜃𝐼𝑇
𝑇−1} is the relative weight for the temporal interaction potential, assumed to 

depend on the epoch 𝑡 and on the image sequence length.  

The association potential 𝐴𝑡(∙) measures how likely an image site 𝑖 in epoch 𝑡 will take a 

label 𝑦𝑖
𝑡 given its feature vector 𝐟i(𝒙𝑡) that may depend on the entire image at epoch 𝑡. Thus, 

the association potential is given by 𝐴𝑡(𝑦𝑖
𝑡, 𝒙𝑡) = 𝑙𝑜𝑔𝑃 (𝑦𝑖

𝑡|𝐟i(𝒙𝑡)), where 𝑃 (𝑦𝑖
𝑡|𝐟i(𝒙𝑡)) is a local 

class conditional probability at image site 𝑖 given 𝐟i(𝒙𝑡). Any discriminative classifier with a 

probabilistic output can be used here. In this work, we adopted the Random Forest (RF) 

classifier (Breiman, 2001). RF generates an ensemble of randomized decision trees during 

training. For classification, each tree casts a vote for the most likely class based on its features. 

Then, the probability measure used to calculate the association potential is defined by the ratio 

of the sum of all votes for a class and the total number of trees. 

The spatial interaction potential 𝐼𝑆𝑡 measures how labels at spatially neighboring sites 𝑖 
and 𝑗 interact given the data 𝒙𝑡 observed at time t. Contrast-sensitive smoothing labeling 

methods, which penalize label changes unless a significant data variation occurs in neighboring 

sites, have been successfully applied for this purpose (Schindler, 2012). Equation 3 presents the 

contrast-sensitive Potts model (Shotton et al., 2009) used in this work, which takes into account 

the similarity of adjacent site feature vectors by its Euclidian distance 𝑑𝑖𝑗 = ‖𝐟i(𝒙𝑡) − 𝐟j(𝒙𝑡)‖. 

 

𝐼𝑆𝑡(𝑦𝑖
𝑡, 𝑦𝑗

𝑡 , 𝒙𝑡) = 𝛿(𝑦𝑖
𝑡 = 𝑦𝑗

𝑡) [𝑝 + (1 − 𝑝)𝑒
−

𝑑𝑖𝑗
2

2𝜎2] (3) 

 

where 𝜎2 refers to the mean value of squared feature distances 𝑑𝑖𝑗
2  and is computed during 

training and 𝛿(∙) is a delta function returning 1 if its argument is true and 0 otherwise. The 

parameter 𝑝 ∈ [0,1] in Equation 3 controls the relative influence of the data-dependent and 

data-independent terms.  

 The temporal interaction potential 𝐼𝑇𝑡𝑘 measures how labels 𝑦𝑖
𝑡 and 𝑦𝑖

𝑘 at the same site 𝑖 

in adjacent epochs 𝑡 and 𝑘 interact given their observed data 𝒙𝑖
𝑡 and 𝒙𝑖

𝑘. A generic model based 

on the joint posterior is used to design these potentials. At the cost of learning more parameters 

the model can express the fact that certain class relations may be more likely than others given 

the data (Niemeyer et al., 2016). 

 

𝐼𝑇𝑡𝑘(𝑦𝑖
𝑡, 𝑦𝑖

𝑘, 𝒙𝑖
𝑡 , 𝒙𝑖

𝑘) = 𝑙𝑜𝑔𝑃 (𝑦𝑖
𝑡 , 𝑦𝑖

𝑘|𝐠i(𝒙𝑖
𝑡, 𝒙𝑖

𝑘)) (4) 

 

where 𝑃 (𝑦𝑖
𝑡, 𝑦𝑖

𝑘|𝐠i(𝒙𝑖
𝑡, 𝒙𝑖

𝑘)) represents the joint posterior probability of classes 𝑦𝑖
𝑡 and 𝑦𝑖

𝑘 at site 

𝑖 at adjacent epochs 𝑡 and 𝑘 given an interaction feature vector 𝐠i(𝒙𝑖
𝑡, 𝒙𝑖

𝑘), whose components 

are functions of the data observed at epochs t and k. Again, a Random Forest is used to 

determine these probabilities in the same way as for the association potential.  
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In our application, the nodes correspond to the pixels of the georeferenced images. The 

neighborhoods considered to add contextual information in the spatial and temporal domains 

for both interaction potentials are illustrated in Figure 1. The red node represents an image site 

𝑖 in epoch 𝑡 with spatial neighbors 𝑗 ∈ 𝑁𝑖 (orange nodes) considering 8 neighbors and temporal 

neighbors 𝑘 ∈ 𝐶𝑖 (green nodes) in adjacent epochs. The spatial and temporal interaction 

potential are represented as solid and dashed lines, respectively. The site-wise feature vectors 

𝐟i(𝒙𝑡) are defined to consist of the spectral values directly observed at site 𝑖 and the NDVI 

derived from the spectral values. The temporal interaction feature vectors 𝐠i(𝒙𝑖
𝑡, 𝒙𝑖

𝑘) are 

obtained by concatenating the site-wise feature vectors 𝐟i(𝒙𝑡) and 𝐟i(𝒙𝑘). 

The classifiers for the association and temporal interaction potentials, respectively, were 

trained independently of each other. The weights for the spatial and temporal interaction 

potentials, 𝜃𝐼𝑆 and 𝜽𝐼𝑇, respectively, are found using the Powell’s search method (Kramer, 

2010) setting all weights to one as starting solution, for a given image sequence length. The 

parameters of the spatial interaction potentials were determined empirically.  

Exact inference, which is the task of finding the optimal label configuration 𝒚 based on our 

model described by Equation 2, is computationally intractable for CRFs, except for special 

cases in binary classification (Kumar & Hebert, 2006). Thus, we used Loopy Belief Propagation 

(LBP) (Frey & MacKay, 1998), an approximation for graphs with cycles. 

 

3. Experimental Analysis 

 

3.1. Dataset 

The study area has an extension of 46 km2 and corresponds to the municipality of Ipuã, in 

the state of São Paulo, Brazil (see Figure 2a). A sequence of 9 Landsat scenes (see acquisition 

dates in Figure 2b) was taken, from either Landsat-5 (TM) or Landsat-7 (ETM+) with 30 m 

spatial resolution. The reference for each epoch was produced manually by a human expert.  

 
 

Figure 1. Multi-temporal graph structure corresponding to an image sequence of 𝑇 epochs 

(here: 3), where an image site 𝑖 (red) at epoch 𝑡 has neighbors in the spatial domain 𝑁𝑖(orange) 

and the temporal domain 𝐶𝑖 (green). The spatial and temporal interactions are represented by 

solid and dashed lines respectively. 
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Agriculture is the main activity in this area; the most common crops are sugarcane, 

soybeans and corn. Sugarcane is a semi-perennial crop with cycles of 12 and 18 months. On 

the other hand, soybeans and corn are annual crops with cycles between 3 – 6 months (Schultz 

et al., 2015).  

Based on the spectral differences observed in the images, the following phases were 

considered in our study: Initial phase of plant development (IPPD), Full Vegetative Vigor phase 

(FVVP) and Senescence phase (SP). During IPPD, the spectral response is dominated by the 

soil (when the soil is prepared before planting) or by the soil with straw (when planting is done 

over straw of the former crop) because the plants are very small and cannot be detected due to 

the coarse spatial resolution of orbital sensors such as Landsat. The next phase is FVVP, where 

the spectral response is dominated by photosynthetically active green vegetation (low 

reflectance in Red band and high reflectance in NIR band). Finally, SP comprises the phase 

where the plant leaves and grains, etc., begin to dry. Note that, depending on their physiology, 

not all crops pass all these three phases. In our study area, corn and soybeans pass by the three 

phases but sugarcane does not. However, there are some differences between the 𝑆𝑃 phase for 

corn and soybeans when they are ready for harvesting. In corn all components are dry (i.e. 

leaves, cobs, etc.), whereas in soybeans, only the pods are dry because leaves fall off after being 

dried. Prepared Soil and Post-Harvest stages, which were assigned to no crop, were also 

modeled. The Prepared Soil phase involves the ploughing and soil grooming processes, and in 

the Post-Harvest stage the vegetation residues still lie on the ground (i.e. straw). Even though 

Pasture and Riparian Forest are actually not crops, they were also treated as crop types in our 

model, and we assumed that both are permanently in one single stage (which means that there 

is one class for both (see Table 1). A class Others was considered, too, which represents other 

minor crops as well as urban areas and water bodies.  

Due to the reduced availability of images with a low cloud coverage in our study area, there 

is a gap in the image sequence from November 2000 to January 2001. As a direct consequence 

of this gap, it was not possible to obtain images for all soybeans’ phases. Table 1 summarizes 

all crops and phases considered. The first column represents the classes considered in this study. 

 

 

(a) (b) 

Figure 2. (a) Study area: Municipality of Ipuã in Sao Paulo, Brazil. (b) Acquisition dates 

corresponding to the image sequence in the dataset.  

 

08/2000

10/2000

09/2000

02/2001
03/2001
04/2001

06/2001

05/2001

07/2001
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3.2. Experimental Protocol 

 The proposed CRF model was tested for pixel-wise classification. A sequence of 9 images 

were used with references for all epochs; each image has approximately 500K pixels. 

In our tests, we applied cross-validation taking approximately equal data partitions for 

training, determination of parameters (i.e., weights of the potentials) and testing and repeated 

the classification three times, varying the roles of the data subsets, so that each pixels was 

classified at least once in the test set. In each iteration of the cross-validation, the sequence 

length varied from 2 to 𝑇, where 𝑇 is the number of epochs in the dataset. For each sequence 

length, the starting and end epochs were exhaustively moved across the whole sequence. For 

instance, for a sequence length of 2, sequences considering images from the 1st to 3rd, 2nd to 

4th, 3rd to 5th and so on until 7th to 9th, were evaluated. Finally, the average of the overall 

accuracies of every sequence was computed. 

The RF classifier used to compute the association and the temporal interaction potentials 

was applied with 250 trees (Hastie et al., 2009) and a tree depth of 25. These potentials and the 

parameter 𝜎2 of the contrast-sensitive Potts model for the spatial interaction potential were 

learned from training data. The parameter 𝑝 of the spatial interaction potential, which represents 

the relative influence of the data-dependent and data-independent terms, was set to 0.5.  

Our model, henceforth referred as 𝐶𝑅𝐹𝑚𝑢𝑙𝑡𝑖, was compared with two mono-temporal 

approaches: the one that considers only the association potential and no spatial context, which 

leads us to a Random Forest classification (𝑅𝐹) and the second one that considers only the 

association and the spatial interaction (𝐶𝑅𝐹𝑚𝑜𝑛𝑜). 

 

4. Results and Discussion 

 The results of our experiments are summarized in Table 2, where the average of the Overall 

Accuracy (𝑂𝐴) and Kappa Index (𝐾𝑎𝑝𝑝𝑎) are presented. A comparison between 𝑅𝐹 and 

𝐶𝑅𝐹𝑚𝑜𝑛𝑜 shows significant performance improvements (from around 74% to nearly 80%) 

resulting from considering spatial context. Furthermore, with the addition of the temporal 

interaction potential as in the 𝐶𝑅𝐹𝑚𝑢𝑙𝑡𝑖 approach, even higher accuracies were obtained, 

attesting that the use of images of different epochs improves crops classification. The example 

shown in Figure 3 allows for a visual evaluation of the performance gains obtained with the 

incorporation of spatial and temporal interactions in the model.  

 

Table 1. Classes considered in this study, which are formed by the combination of each crop 

with its corresponding phenological stage.  

 

Class Crop Phase 

PP 
No crop 

Prepared Soil 

PH Post-Harvest 

SJ- FVVP 
Soybeans 

Full Vegetative Vigor phase 

SJ-SP Senescence phase 

CR- IPPD 

Corn 

Initial phase of plant development 

CR- FVVP Full Vegetative Vigor phase 

CR-SP Senescence phase 

SC- IPPD 
Sugarcane 

Initial phase of plant development 

SC-FVVP Full Vegetative Vigor phase 

PS Pasture - 

RF Riparian Forest - 
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Clearly, the salt & pepper effect present in Figure 3a is attenuated in Figure 3b by the 

smoothing action of the contrast-sensitive Potts model. Similarly, the incorporation of the 

temporal interaction improved the classification in large areas, as shown in Figure 3c, although 

in some parts differences to the reference (Figure 3) remain. 

 In 𝐶𝑅𝐹𝑚𝑢𝑙𝑡𝑖, there is a consistent improvement in the classification accuracy until a 

sequence length of 3, then, the accuracy decreases and increases again regularly with the 

sequence length. A possible explanation for this behavior is its relation to the phenological 

cycle and to the gap between the acquisition dates in the dataset, which introduces a high 

change, in crops and their phases, in the image sequence.  

 

5. Conclusions 

 A spatio-temporal Conditional Random Field approach for crop recognition has been 

proposed and evaluated on a sequence of 9 Landsat images in this work. The new methodology 

lead to an increase of up to 6% in overall accuracies compared to mono-temporal context-based 

classification and of up to 12% compared to classification without considering context, 

demonstrating the importance of considering context sequences of images of different epochs.  

 The classification accuracy increases while the image sequence length increases until 

certain point, which seems to be related to the beginning of another phenological cycle. 

Table 2. Average of Overall Accuracies and Kappa index using Random Forest (𝑅𝐹), a mono-

temporal CRF (𝐶𝑅𝐹𝑚𝑜𝑛𝑜) and the multi-temporal CRF proposed in this work (𝐶𝑅𝐹𝑚𝑢𝑙𝑡𝑖). 

 

Sequence Length 
𝑂𝐴 (%) 𝐾𝑎𝑝𝑝𝑎 (%) 

𝑅𝐹 𝐶𝑅𝐹𝑚𝑜𝑛𝑜 𝐶𝑅𝐹𝑚𝑢𝑙𝑡𝑖 𝑅𝐹 𝐶𝑅𝐹𝑚𝑜𝑛𝑜 𝐶𝑅𝐹𝑚𝑢𝑙𝑡𝑖 

2 73.9 79.5 82.9 65.7 72.2 76.6 

3 73.8 79.4 85.8 65.6 72.1 80.2 

4 73.9 79.6 84.3 65.8 72.5 80.1 

5 74.1 79.8 85.2 66.1 72.8 80.4 

6 73.9 79.6 85.9 65.8 72.5 81.2 

7 73.8 79.4 85.9 65.6 72.1 81.4 

8 73.9 79.5 85.8 65.7 72.2 81.2 

9 73.8 79.3 85.3 65.5 71.9 79.4 

 

    
(a) (b) (c) (d) 

 
 

Figure 3. Snip of the maps obtained for an image taken in February 2001 using (a) Random 

Forest (𝑅𝐹), (b) a mono-temporal CRF (𝐶𝑅𝐹𝑚𝑜𝑛𝑜), (c) the multi-temporal proposed approach 

(𝐶𝑅𝐹𝑚𝑢𝑙𝑡𝑖) for a sequence length of 3 from the 2nd to 4th image in the sequence and (d) 

reference. 
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Information about the duration of phenological cycles of each crop is thus believed to be very 

important in order to select a suitable sequence of image containing enough samples of each 

crop and its stage. 

 Extensions of this study will consider the usage of alternatives sensors such as SAR as well 

as the exploitation of expert knowledge to better model temporal context. 
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