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Abstract. Collecting and analyzing forest information is critical for sustainable forest management.
Here we propose a method to automatically detect the location and diameter of tree crowns at early
growth stages in regularly planted forests using very high spatial resolution RGB imagery acquired
by unmanned aerial vehicles (UAVs). A list of candidate detections is generated matching the
multiscale convolutions of synthetic crown templates to image objects. Strong matches are filtered
using color-based rules. Local attributes describing the color and spatial information in small image
patches centered in each retained detection are passed to an off-line trained Random Forest classifier
that assigns a level of confidence to each tree crown detection. The method is tested on orthorectified
RGB mosaics with a pixel spacing of about 11 cm using circular templates with diameters in the range
50–200 cm. Experiments at two study sites containing about 120-day-old plantations of eucalyptus,
located in Southern Brazil, suggest detections accuracies above 90% when non-overlapping adjacent
crowns have a diameter larger than 6 pixels and are surrounded by mixed backgrounds such as exposed
soil and debris from the previous harvest. The automated counts of trees in 12 footprints of 1,257m2

were within ±11% of the visual estimate, and within ±4% when averaged for the study. Examples of
challenging scenarios requiring further methodological developments are presented. We anticipate that
automated tree crown detection using the proposed prototype algorithm may complement traditional
field-based tree inventory.

Keywords: forest inventory, image segmentation, remote sensing, inventário florestal, segmentação de
imagens, sensoriamento remoto.

1. Introduction
Forests are an asset for economic development and for the planet. The sustainable

management of planted forests of pine and eucalyptus requires the monitoring and analysis
of large volumes of data. To meeting the demand for raw materials, a precise estimate of the
number of trees growing in the stands is highly desirable. Counting trees is part of the costly
forest inventory. According to Oliveira et al. (2014), the continuous forest inventory is one
of the most widely used inventory forms in Brazil to monitor forest growth. However, errors
associated with conventional inventories have been reported, such as bias in the measurement
of tree diameter and height, plot area, data manipulation and, mainly, errors associated with the
sampling procedure. The impact of such errors vary with the dendrometric variable analyzed
and are higher for the number of trees per hectare. These errors decrease the quality of the data
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collected and negatively affect the accuracy of the growth and production models, impacting
planning. Such errors can only be solved if the census of trees is carried out in the whole area.
There is a great variation in tree spacing in planted forests, which can be caused by errors in
the planting process, the presence of topographic conditions that prevent the planting operation
correctly, and natural mortality in the forest, among others. All these issues impact the estimated
number of trees and, consequently, the total volume of wood. Remote sensing can complement
field-based assessments. For instance, UAVs offer flexibility in acquiring images, at lower costs
and improved temporal and spatial resolution if compared to satellites. Poor flight stability,
limited autonomy, and camera calibration issues are among the challenges to overcome.

1.1. Objectives
The objectives of this research are two-fold. First, to develop and test a prototype of

an automated algorithm for individual tree crown detection using well-established image
processing and statistical learning techniques. The method should be able to detect planted trees
at early stages of development analyzing georeferenced very high spatial resolution (≈10 cm)
RGB mosaics of aerial photographs. Secondly, to understand practical challenges that motivate
the need for the development of more advanced image analysis and machine learning methods
tailored for this specific problem.

1.2. Related work
Ke e Quackenbush (2011) grouped previous individual tree crown detection studies using

passive remote sensing data in four broad algorithmic categories: based on local maximum
filtering, image binarization, scale analysis, and template matching. These methods proved
useful to analyze forests in a wide range of age and use conditions. Pouliot et al. (2002)
presented a tree detection and delineating algorithm that was tested on airborne imagery of
5 to 15 cm pixel spacing to detect 6-years-old planted trees based on the analysis of transects
extending outward from a potential tree apex. Kang et al. (2016) relied on near-infrared UAV
imagery to identify tree crowns in undulating areas. The study focuses on evaluating different
methods performance with focus on sunlit and shaded areas, as well as, sparsely and densely
populated forests. LIDAR could point data helps crown detections (Oliveira et al. (2014)).

The remaining of the paper is organized as follows. Section 2 describes the proposed
prototype algorithm and the main contributions of this work, which include the definition of
a customized template for crown detection, and the use of simple image patch descriptors
to assign levels of confidence to the automated detections. The accuracy of our algorithm is
measured on image footprints randomly selected from two real data sets presented in Section 3.
Conclusions are summarized in Section 4.

2. Methodology
Our tree crown detection pipeline involves the five main steps presented below.

2.1. Pre-processing: adaptive contrast enhancement
The colors of the input image are enhanced using a locally adaptive contrast enhancement

approach. We compute the range of intensity values in a fixed neighborhood of radius r
(r=10m in our experiments) around each pixel, for each color channel. This estimates the
approximated color of the darker objects (usually trees or shadows) and the brighter image
background typically present in our case studies. The intensity of each channel in the local
neighborhood is then linearly mapped to new values such that the resulting image stretches to
8 bits. Morphological operations such as the “top-hat"filter (Serra e Soille (2012)) helps in the
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(a) (b) Data set 106 (c) Data set 108

Figura 1: (a) Proposed synthetic template combining a disk and ring elements used for
multiscale convolutions. (b–c) Overview of the two test sets showing the location of the center
of the 12 randomly selected image footprints used for accuracy assessment (as a scale reference,
all crosses are 150 m wide).

implementation. A Gaussian low-pass filter with a kernel size σ (σ=0.125 m in our experiments)
helps to remove noise in the resulting image.

The primary objective of this preprocessing is not to provide a visually enhanced image
preserving radiometric information since color distortions (tone) are introduced in the process
of analyzing independently each input channel. This preprocessing step is only intended to
attenuate eventual uneven illumination effects along large input mosaics (due to variations in
photo exposure, cloud shadows, etc), and assist the successive image processing tasks, as it may
be a bit easier to set, for instance, color channel thresholds.

2.2. Compute band indices to help crown detection
We would like to have discriminating images where tree crowns, shadows, and other land

covers are well distinguishable. However, achieving a good statistical separation is in general
difficult using solely RGB imagery without infrared bands. Given the pre-processed image, we
compute the auxiliary band index:

ρG = 2
G

(R +B)
(1)

i.e., we measure the excess of the green color component (G) compared to the average of the red
(R) and blue (B) values. Observation suggests that often the planted tree crowns have a higher
index (Eq. 1) then the surrounding background areas in the image. Therefore, thresholding the
resulting ρG image is expected to help to separate tree crowns from other spurious candidate
detections. Furthermore, we retain the difference (grayscale) image δ = (G − R) for template
matching. Strong candidates detections obtained convolving synthetic tree crown templates to
image objects, and above the color index threshold tρG , will be retained for final classification.

2.3. Mutiscale convolutions
Convolving an image with an appropriate filter is a popular approach to emphasize objects

or structures of interest in digital images (Trier, Zortea e Tonning (2015)). A relevant question
is how to set the appropriate template for a specific application. In the tree crown detection
problem, possible attempts include deriving a shape based on data observations, for instance
averaging a set of representative tree crowns, or using synthetic circular templates. Here we
focus on the second approach, proposing the use of circular templates made of an internal
circle, aimed to cover most of the tree crown area, and an external ring that is expected to lie on
the adjacent image background (e.g. exposed soil, debris, etc) as depicted in the sketch shown
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in Figure 1(a)1. We keep a fixed 50 cm margin between the inner circle and the outer rim to
accommodate tree crown with irregular shapes.

Once defined the template, the grayscale difference image δ is convolved with the template
shown in Figure 1(a) at increasing spatial sizes to detect tree crowns of multiple diameters. A
relevant aspect is choosing the right scale of the templates. Ideally, the range of suitable scales
should be based on a priori information about the typical sizes of the trees to be detected in
a study area, and the spacing between adjacent trees. For each pixel location in the resulting
convolution image Ic, we store the maximum convolution value and the respective (optimal)
scale fitting the image objects. In the sequence, we mark local maxima in the convolution
image Ic inside a circular neighborhood of radius rm (rm=75 cm in our experiments), and retain
the spatial locations of the strong maxima, i.e., convolution values above a certain threshold tc
(set at the 70-th percentile of Ic in our experiments). The resulting candidates having a color
value above tρG in Eq. 1 (we use a loose tρG=0.85 in our experiments) and below a fixed red
color value tr (set at the median of R in our experiments) are retained as candidates for final
classification and confidence estimation.

2.4. Feature extraction for classification and confidence estimation
For each candidate point detection retained after the above-mentioned steps, the convolution

response and color values in the local image patch centered in each candidate are further
analyzed. Let I(i, j) be the small image patch centered at pixel locations (i, j) of sizew = 1.5φ,
where φ is scale of the best fitting circular template matched to the image (object), which
correspond to the estimated diameter of the tree crown, rescaled to a fixed w × w matrix (w=9
in our experiments). Each I(i, j) is first centered in its median value and then converted to the
18-dimensional feature vector:

F (I) = [u1, u2, . . . , u9, v1, v2, . . . , v9], (2)

where the sum of rows and columns of the image patch:

uk =
9∑
j=1

I(k, j) and vk =
9∑
i=1

I(i, k), (3)

help to describe each patch. Each candidate detection will be represented by the concatenated
39-dimensional features x = {F (R), F (Ic), σ2

(R), σ
2
(Ic)
, σ2

(R,Ic)
} extracted from the patches of

the red channelR and the convolution image Ic. Here σ2
(·) are the variances and the covariance of

the pixels in I(i, j) for the channelsR and Ic. These descriptors are straightforward to compute.
Possible alternatives include using more sophisticated keypoint descriptors and textures.

2.5. Statistical classification
We estimate the probability that each candidate detection x is a tree crown using the Random

Forest classifier (Breiman (2001)). This popular non-parametric model has proved useful in
many machine learning applications and was selected because its posterior estimates were
often not saturated in 0 or 1 making it a bit easier to group classification probabilities in a few
wide intervals. This binary classifier was trained off-line using a small labeled set of tree and
background detections. Out-of-bagging classification error was below 2%. The trained model
is kept unchanged, i.e., we do not retrain the classifier for each new image to the analyzed.
Detections with a very low posterior estimate (confidence) are discarded (P(tree|detection) <

1For convenience, the sum of all pixels values inside the template are set to zero.
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0.05). The coordinates of the remaining detections, the estimated crown diameters, and the
respective probabilities constitute the output to the user. To help visual interpretation, the
probabilities are grouped in a few discrete intervals that are color coded to overlay the detected
crowns to the input image (see examples in Figures 2–3).

3. Experiments
3.1. Data

The proposed algorithm was tested on 12 circular footprints of diameter 40 m (1,257 m2

each) randomly sampled from two large image mosaics named 106 (size 760 MP) and 108
(size 1.59 GP), shown in Figure 1(b–c). The sites are located in Telêmaco Borba, Paraná
State, Southern Brazil, near (24.2363S, 50.4433W) and (24.2189S, 50.5532W). The study
sites are commercially used for pulp production. The sampled areas contain about 120-day-
old eucalyptus planted at the nominal spacings of 3.80×1.57 m (site 106) and 3.55×1.69 m
(site 108). Six locations were sampled from each of the two data sets. The aerial photographs
were collected using the Carcará UAV by a commercial partner (SantosLab Ltda, Rio de
Janeiro, Brazil) and processed to orthorectified mosaics using the PiX4D c© software (Pix4D
SA, Lausanne, Switzerland). The output imagery was stored in GeoTIFF files georeferenced in
UTM coordinates with spatial resolutions 10.6 cm and 11.5 cm, respectively.

3.2. Protocol
The random sampling was guided by a shapefile delineating the approximate location of

the planted fields to be processed by the proposed algorithm. Each footprint had to contain
more than 50% of its area planted to be eligible for accuracy assessment, and be nearly cloud-
free. The alive (green) tree crowns in each image footprint shown in Figures 2–3 were visually
marked overlaying a 10 pixel reference disk centered at each tree crown location. The diameter
of the footprint was set to tradeoff the laborious image interpretation work while sampling over
100 trees per footprint. Because of the small tree diameters (sometimes smaller than 5 pixels),
and the resulting color of mixed pixels, there were challenging scenarios to establishing visually
wheatear tree crowns were present and/or alive.

The binary Random Forest classification model was trained using samples from a spatially
disjoint scene that did not overlap the testing areas. We assigned blue color for crowns detected
with high confidence (here defined as having posterior probabilities for the tree crown class in
the range 0.6–1.0), cyan for medium confidence (0.4–0.6), yellow for low confidence (0.1–0.4),
and red color as a baseline for very low confidence (0.05–0.1). These intervals were set by
visual inspection of a separate training set.

The proposed tree crown detection algorithm was tested using the proposed circular template
with internal circular diameters of {0.5, 0.6, . . ., 2.0} m. Despite not expecting to find such
large tree crowns in early stage plantations, we intentionally set the large upper limits to check
wheatear (wrong) large detections would be included. We count the number of trees visually in
each footprint and compare it with the automated detections provided by the tested algorithm.
This is done by checking whether the proposed crown center hits the ground truth circular mask
10 pixels wide manually centered in each tree crown location.

3.3. Results
Figures 2–3 show tree crown detected using the proposed method. The respective accuracy

scores are summarized in Tables 1–2. Detections whose centers hit the reference 10-pixel wide
disk centered in each tree crown were considered correct. The accuracy of the estimated crown
diameter is not evaluated quantitatively, but visual inspection of Figures 2–3 suggest good or
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Figura 2: Four of the six footprints located at the study site 106. The red circle of 40 m diameter
delineates the area used for accuracy assessment. The image extends to an additional 2.5 m
wide external rim area, depicted in grayscale, providing visual continuity and scale reference.
Besides each footprint lies the respective input RGB image with the automated detections
overlaid (here shown without preprocessing). Circles in blue color correspond to the crowns
detected with high confidence, cyan for medium confidence, yellow for low, and red for very
low confidence. The five-pixel wide crosses (53 cm) inside the circles indicate the estimated
center of the crowns and are shown in cyan in all cases. Individual crosses not surrounded by
a circle indicate possible tree locations with confidence below 5% that were excluded by the
classification step. Scattered yellow dots show points of local convolution maxima that were
excluded earlier during color analysis.

reasonable agreement in most of the footprints tested.
Detections with higher levels of confidences were confirmed to be more likely to be trees.

For instance, 94.3% of the 857 detections labeled with high confidence (in blue color in
Figure 2) hit the ground truth crown masks according to the adopted criteria. This figure
decreases to 87.2% for the 141 detections labeled with medium confidence (Table 1). Although
hitting the manually drawn reference crown masks would be reassuring, visual inspection of

Tabela 1: Summary of individual tree crown detections for the six footprints located in the
data set 106. The number of detections, (the percentage of detections that hit the reference
tree crowns), and the percentage of accumulated detections if compared to the visual counting
(100%) are shown for each level of confidence estimated using the proposed algorithm.

# Visual Level of confidence for the automated detections
counting high % medium % low % very low %

1 169 148 (96.6) 87.6 9 (77.8) 92.9 2 (100.0) 94.1 0 (0.0) 94.1
2 194 147 (92.5) 75.8 34 (94.1) 93.3 6 (0.0) 96.4 1 (0.0) 96.9
3 148 93 (95.7) 62.8 28 (85.7) 81.8 16 (68.8) 92.6 1 (0.0) 93.2
4 144 104 (95.2) 72.2 28 (92.9) 91.7 18 (72.2) 104.2 2 (100.0) 105.6
5 210 184 (90.2) 87.6 19 (94.7) 96.7 6 (83.3) 99.5 1 (100.0) 100.0
6 194 181 (96.7) 93.3 23 (69.6) 105.2 6 (50.0) 108.2 0 (0.0) 108.2
all 1059 857 (94.3) 80.9 141 (87.2) 94.2 54 (63.0) 99.3 5 (60.0) 99.8
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Figura 3: Four footprints located at the study site 108. For reference the cyan crosses are five
pixels wide (58 cm). (see caption to Figure 2 for further details).

Tabela 2: Summary of individual tree crown detections for the six footprints located in the
data set 108. The number of detections, (the percentage of detections that hit the reference
tree crowns), and the percentage of accumulated detections if compared to the visual counting
(100%) are shown for each level of confidence estimated using the proposed algorithm.

# Visual Level of confidence for the automated detections
counting high % medium % low % very low %

1 184 54 (96.3) 29.3 73 (84.9) 69.0 54 (72.2) 98.4 5 (80.0) 101.1
2 208 135 (95.6) 64.9 71 (97.2) 99.0 12 (75.0) 104.8 4 (25.0) 106.7
3 222 121 (99.2) 54.5 60 (95.0) 81.5 30 (76.7) 95.0 3 (66.7) 96.4
4 204 211 (94.3) 103.4 5 (60.0) 105.9 9 (0.0) 110.3 1 (0.0) 110.8
5 218 217 (97.7) 99.5 5 (80.0) 101.8 6 (0.0) 104.6 2 (0.0) 105.5
6 184 128 (97.7) 69.6 39 (89.7) 90.8 19 (84.2) 101.1 1 (0.0) 101.6
all 1220 866 (96.7) 71.0 253 (90.9) 91.7 130 (66.9) 102.4 16 (43.8) 103.7

Figures 2–3 suggests it may be not strictly necessary in order to accurately estimate the total
number of trees. This is because some detections are still close enough to the crown locations if
compared to the distance between adjacent trees. The high confidence category included 80.9%
and 71% of the reference number of trees for data sets 106 and 108, respectively.

The estimated number of trees was close to the reference established visually when the
automated detections allocated in the high, medium, and low levels of confidence were
combined. In this setting our model was strongly predictive, counting 99.3% (Table 1) and
102.4% (Table 2) of the trees, which means that the aggregated estimates of the number of trees
in each set of six footprints were very close to the reference number established visually. This
is because missing detections are partially compensated by wrongly-placed crown detections.
Finally, it is important to keep in mind that variations among individual footprints counts do
exist and are not negligible, up to -7.4% (footprint 106-3 in Table 1) and +10.3% (footprint
108-4 in Table 2).

Figure 4 show examples of challenging scenarios for automated detection using the
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Figura 4: Exemple of challenging scenarios for automated detection. (Left) Shadows cast
from an adjacent natural forest. (Middle) Very small trees and possible competition vegetation.
(Right) Old forest with overlapping tree crowns.

proposed algorithm. It includes occlusions due to shadows from an adjacent forest, the presence
of very small trees and possible nearby competing vegetation, and an old planted forest where
most of the adjacent crowns overlap. In this last case, the proposed algorithm is not applicable
because the underlying hypothesis that the external rim of the synthetic tree crown template
lies on the image background is violated. Further methodological developments are needed to
couple with these challenging scenarios.

4. Conclusions
Our approach estimated the location of individual eucalyptus crowns in the early stages of

development with accuracies above 90% using RGB imagery with a pixel spacing of about
11 cm. The proposed algorithm seems to be capable of analyzing crowns that are clearly
visible in the scenes (preferably larger than 6 pixels wide) when the background of the image
is rather homogeneous, as in cases of exposed soil or debris with a discernible brighter color.
The automated counts for each tested footprint were within ±11% of the visual estimate, or
within ±4% when the footprints were aggregated. Imposing a circular crown shape a priori
for multiscale detections seems to be a promising approach and could potentially help to
analyze adjacent overlapping crowns. Testing the proposed algorithm on additional data sets
and comparing results to census data is needed, as well as further methodological developments
to tackle the challenging scenarios identified.
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