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Abstract. Sand pit extraction, known as “Canchas”, is recognized as one of the major environmental problems in 

northern Acre. Canchas impact the environment by not allowing the native vegetation to regenerate but also 

polluting water springs in the nearby areas. This paper has two objectives. First, we test the use of the Sentinel-2 

data to detect sand pits, which usually are relatively small areas, with borders with water bodies and dense 

vegetation. Secondly, by using the random forest algorithm and multiresolution segmentation procedure combined 

with data mining, we test the generalization of this method by applying the settings defined in the first objective to 

an independent dataset (image) for the same location. The study area is located in the municipality of Cruzeiro do 

Sul, northwest portion of Acre state, Brazilian Amazonia. Preliminary results show that the proposed method is 

suitable for semi-automatic image classification purposes with satisfactory results. The map generated presented 7 

land cover classes, which corresponded to the samples acquired. Through means of cross-validation the map 

exhibited a kappa accuracy of 0.73. The random forest classification model displayed good generalization power by 

being trained with samples of only one of the images (2016-10-30) and correctly detecting sand pit areas in the 

independent image (2016-05-03). Therefore, the development of an automated alert system for detecting sand pits 

in Amazonia is realistic and could provide spatial information for environmental agencies to regulate this activity. 

Future analysis will encompass the evaluation of field data and radiometric characteristics for impact assessment. 

Keywords: Remote sensing, Sentinel-2, forest degradation, Amazonia, Multiresolution Segmentation, Random 

Forest, Classification. 

1. Introduction 

Due to its biodiversity, the Amazonian Forest composes one of the most important 

ecosystems on Earth (FEARNSIDE, 2013). Acre state is located in the lowlands of the 

southwestern Amazon, within a region considered with varied vegetal structure, such as: 

ombrophilous forest, palm trees, bamboos and campinaranas (GUIMARÃES; BUENO, 2016; 

SILVEIRA, 2003) being considered one of the most vulnerable and fragile Amazonian 

ecosystems (DALY et al., 2016). The soils of the region present as main characteristic sandy 

structure, nutrient poor and hydromorphic, leading to a greater time of regeneration after 

deforestation. Currently, among the most exploited natural resources for the region is the 
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extraction of sand (PAULA, 2011), which is often done in an irregular and undocumented way 

(RODRIGUES, 2007).  

When exploited with a precarious methodology, the sand extraction activity is considered a 

harmful practice to the environment (SILVA; SIMI; RUDORFF, 2011). In the productive 

process, sand extracted from the stream bank is stored in fields located on its margins. The 

opening of these fields results in the complete elimination of ciliary vegetation. The subsequent 

removal of the sand with machines (loaders) causes intense degradation of the soil inside the 

fields due to the removal of the surface and sub-surface layers of the soil (JUNIOR et al., 2012).  

When the sand mined in the river is scarce, the extraction dredges are moved to new 

locations, resulting in the abandonment of the courts. Devoid of vegetation cover and deeply 

altered soil, the recovery of the vegetation inside the fields is very impacted, damaging the 

recovery of the riparian forest that protects the banks of the river against the erosive process that 

causes the sedimentation of its bank. 

With this environmental degradation process in course, remote sensing (RS) comes into 

play. The orbital RS is a key tool for the mapping and updating of critical areas, offering 

systematic coverage and high geometrical quality. In addition to these qualities resulting from 

the imaging in several multispectral channels, it is possible to get high spatial resolution images 

of those damaged areas. These tasks can be fulfilled with sensors like Sentinel-2.  

To achieve frequent revisits and high mission availability, two identical Sentinel-2 satellites 

(Sentinel-2A and Sentinel-2B) are planned to operate simultaneously. The launch of the first 

satellite, Sentinel-2A, occurred on 23 June 2015 at 01:52 UTC on a Vega launch vehicle 

(INSIDER, 2015) Sentinel-2B will be launched in April 2017. However, there is still a spatial 

resolution problem regarding the Sentinel bands, they are not all in the same resolution (Table 1) 

and the sensor lacks a panchromatic band, which usually has a higher spatial resolution than the 

others. 

In order to address this need, the present paper proposes two objectives: (i) To evaluate the 

detection of sand pits in Sentinel-2 images, which are not large areas in extent but represent a 

severe harm to environment, and (ii) Asses the generalization power of the random forest (RF) 

model in one independent images of the same area.  

2. Methods 

2.1 Study site 
The study area is situated in the municipality of Cruzeiro do Sul, state of Acre (Figure 1a). The 

terrain is formed by a series of hills and surrounded predominantly by Amazonian tropical dense 

vegetation. Cruzeiro do Sul presents a total area of 7,924km² (ACRE, 2013). It is located in the 

northwest region of the state of Acre, on the left bank of the Juruá River, 648 km by land from 

Rio Branco state capital connected by the BR-364 highway. The predominant type of soil is 

podzolic, red and yellow, not possessing rocky ground (DALY et al., 2016). 

a) 

 

Galoá

Anais do XVIII Simpósio Brasileiro de Sensoriamento Remoto -SBSR

ISBN: 978-85-17-00088-1

28 a 31 de Maio de 2017
INPE Santos - SP, Brasil

{ Este trabalho foi publicado utilizando Galoá ProceedingsGaloá

Anais do XVIII Simpósio Brasileiro de Sensoriamento Remoto -SBSR

ISBN: 978-85-17-00088-1

28 a 31 de Maio de 2017
INPE Santos - SP, Brasil

{ Este trabalho foi publicado utilizando Galoá Proceedings 8001



b) 

 
Figure 1.a) Location of the study area. The red dots, represents the three sand pits and water 

springs evaluated in this study; b) Google Street Maps panoramic view of the sand pit extraction 

site in Cruzeiro do Sul (Acre, Brazil). 

 

2.2 Data 

 Two Sentinel-2A image products where used. The images were in processing level 1C, which 

accounts for top of atmosphere (TOA) reflectance. The data was downloaded from the European 

Space Agency (ESA) website <https://scihub.copernicus.eu/dhus/>. The product used is called 

S2A Level-1C which accounts for radiometric and geometric corrections (including 

orthorectification and spatial registration), and the quadrant T18MYS were selected. Two dates 

of imageries were acquired. The main image for developing the methodological procedure was 

acquired in 2016-10-30. The second image, acquired on 2016-05-03, was used as an 

independent dataset for testing the methodological generalization. The Sentinel-2A is equipped 

with the MultiSpectral Instrument (MSI) (Table 1). 

 

Table 1.Spectral bands for the SENTINEL-2 Multispectral Instrument (MSI). 

Band Name Central wavelength (nm) Spatial resolution (m) 

1 Aerossol 443 60 

2 Blue 490 10 

3 Green 560 10 

4 Red 665 10 

5 Red Edge 1 705 20 

6 Red Edge 2 740 20 

7 Red Edge 3 783 20 

8 NIR 842 10 

8a Water-Vapor 865 20 

9 Cirrus 945 60 

10 SWIR 1 1380 60 

11 SWIR 2 1610 20 

12 Red Edge 4 2190 20 

2.3 Data processing 

The methodological procedure in this work can be divided in three main phases, presented 

below. Further details are presented in the following sections. 

(i) the downloading of two satellite image data and pre-processing the images with the 

Science Toolbox Exploitation Platform (STEP) toolbox, which accounts for the atmospheric 

correction of the LV-1C Sentinel data.  

(ii) the resulting pre-processed image data from phase (i) is then segmented in the 

eCognition platform by using its multiresolution segmentation algorithm. Posterior training 

samples were collected in this segmented image. The segmented image along with all the 

samples goes to final stage (iii). 

(iii) in this phase, the segmented image and training samples are exported as ESRI shapefile 

and imported to the software [R] using a script. The script make a copy of the database files of 
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the original shapefile to a comma separated file that will be used by the Waikato Environment 

for Knowledge Analysis – WEKA (HALL et al., 2009) platform in the data-mining and further 

classification process. This script is freely available at                                 

<https://gist.github.com/davidguima/058e069a0d2d2573d296085339debd78>. 

2.3.1 Multiresolution segmentation 

It is not from nowadays that the segmentation is the object of study in the field of digital 

image processing (ROBERTS, 1963). Haralick and Shapiro (1985) define the segmentation 

process as the division of an image into several parts, being conditioned for this division that 

these parts share homogeneous properties between the elements that integrate it. These elements 

can be pixels or even other segments, and properties that must share similarities vary depending 

on the application one expects from the segmented image. 

Within the RS techniques, the segmentation process precedes the classification stages that 

are based on regions, and among the segmentation algorithms available, the segmentation 

algorithm developed by Baatz and Schape (2000) stands out. This segmentation algorithm is 

called by the authors as polyvalent in view of its multiplicity of applications, and it is adapted to 

the scale of the objects presented in the images according to the parameters entered by the user, 

which is known worldwide as multiresolution or multiscale targeting. 

The segmentation parameters for this research were defined as follows: Shape = 0, 

Compactness = 0 and Scale parameter = 70. Both images where individually segmented with 

the same parameters, which also account for Image Layer Weights = 0 for bands 

1,6,7,9,10,11,12,8A; 1 for bands 2,3,5,8 and 10 for band 4. Alongside the multiresolution 

segmentation, the Spectral Difference algorithm was also used to merge neighboring objects 

according to their mean DN intensity values. The parameters for this algorithm are Maximum 

Spectral Difference = 90; Image Layer Weights= 0 for bands 1,9,10; 1 for bands 

2,3,6,7,8,11,12,13; 2 for band 5 and 10 for band 4. 

2.3.2 Data-mining algorithms and Random Forests 

Objects present in the images (or segments) carry along their characteristics like shape, 

spectrum, hierarchical information and statistics. These properties are used as information 

source to define separation thresholds by the mining algorithm, which will further define the 

inclusion or exclusion of such parameters by the image classification algorithm. This study has 

made exclusive use of the mean layer value as a way of representing the spectral information 

inside the pixels of the image. The method for mining the data and classification was the 

Random Forest algorithm proposed by Breiman (2001) and further implemented in the WEKA 

platform (HALL et al., 2009).  

2.3.3 Validation 

The evaluation of the generated thematic map was performed by using the Kappa index and 

a k-fold cross validation over the 73 samples that were acquired in the segmented image, 

considered as ground truth data. The Kappa coefficient of agreement is constructed from an 

error matrix, in which errors of omission are expressed, that is, samples that were not classified 

according to the reference classes, and the commission errors corresponding to samples of 

incorrectly referenced as belonging to other classes (CONGALTON; GREEN, 2009). The 

Equation 1 gives the Kappa index. 

 
K =

n ∑ nii −k
i=1 ∑ (ni+n+i)

k
i=1

n2 − ∑ (ni+n+i)
k
i=1

 , 
(1) 

Where nii – total number of samples correctly classified from class k; ni+ – total number of 

classified samples from class k; n+i – total number of collected samples from class k; and n – 

total number of samples. 
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In addition to the Kappa index, one of the authors (LR) has performed field work in the 

impacted areas. The map was visually inspected by her and evaluated against more than 80 field 

Global Positioning System (GPS) data points (Table 2). 

Table 2. Strata of 10 out of the 81 GPS points collected in situ for Spring and Igarapé areas. 

Spring A B C D - - 

South 7º 34'44,93'' 7º 34'43,23'' 7º 34'36,64'' 7º 34'16,14'' - - 

West 72º 45'19,27'' 72º 45'23,40'' 72º 46'22,34'' 72º 47'22,36'' - - 

Igarapé A B C D E F 

South 7º 34'45,06'' 7º 34'41,76'' 7º 34'36,16'' 7º 34'36,35'' 7º 34'31,10'' 7º 34'15,86'' 

West 72º 45'19,84'' 72º 45'24,11'' 72º 46'25,26'' 72º 46'24,54'' 72º 46'35,04'' 72º 47'23,36'' 

3. Results  

Preliminary results on the image segmentation exhibits a spatial resolution gain from 60 to 

10 meters per pixel (Figure 3a), by using the mean value of the digital numbers inside the 

segments of the multiresolution algorithm output (Figure 3b). This segmentation made possible 

to improve the original coarse image (Figure 3c) to be resampled to the same resolution (10 m) 

as the fine spatial resolution Red, Green, Blue and NIR bands.  

 

a) 

 

b) 

 

c) 

 

Figure 3. a) Resulting further-detailed image rescaled from 60m to 10m.; b) 

Multiresolution segmentation applied in the 10m bands overlaid the in the coarse 

original S2-A band 1; And c) Original Sentinel-2 Band 1 image with coarse (60m) 

spatial resolution. 

 

By making use of the new generated mean layers for bands 1 to 8A, we classified the image, 

generating as a result a thematic map for each one of the images of the study site (Figure 4). The 

definition of the selected classes are inherited from the original TerraClass data (ALMEIDA et 

al., 2016) with minor adaptation of the typologies for the purpose of including the sand pit areas. 

Some classified class confusion could be observed with the inclusion of the clouds in the “not 

observed” class and some minor confusions of the land cover classes “Bare soil” with “Urban” 

class, which was already expected assuming the influence of the Red wavelength (B4 - 665nm) 

on those classes and thus its spectral similarity. 

Resulting pseudo-spatially-optimized B1 [10 m/pixel] 

 

Band 1 + RGBI (4,3,2,8) segmentation overlay 

RAW S2 Band 1 : Aerossol (443nm)[60 m/pixel] 
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a) 

 

 
 

b) 

 

Figure 4. Final results of the Random Forest classification in Waikato 

Environment for Knowledge Analysis making use of the Cirrus band data in 

the model generated from the a) 2016-10-30 onto the b) 2016-05-03 image. 

 

The cross validation over the samples collected from the image 2016-10-30 displayed a 

Kappa coefficient of 0.73 and is presented in the Table 4. Furthermore, the percentage of land 

area taken by each class is also estimated and presented in subsequent Table 5. 

 

Table 4. Random Forest 10 folds cross-validation output statistics and confusion matrix over the 

classifier model, trained with the 2016-10-30 image sample segments. 
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In order to visually assess the spectral characteristics of the thematic classes, the Figure 5 

displays the normalized reflectance of six of them. The class “Not Observed” was not plotted as 

it is just an abstraction of all the unwanted targets of the scene (clouds and shadow).  

 

Figure 5. Normalized reflectance spectra of the six thematic classes, besides the 

“Not observed” class, which was omitted for having mixed spectral behavior 

resulting from clouds and shadows in the same sample group. 

 

Table 5. Percentage (%) of area taken by each thematic class in the two Sentinel-2 image dates. 

CLASS 05-03-2016 10-30-2016 

Sand pits 0.25  0.29  
Forest 62.65  42.27  
Hydrography 1.26  1.62  
Not observed 2.93  1.08  
Regeneration 26.94  43.63  
Bare soil 2.53  5.38  
Urban 3.44  5.74  

TOTAL (%) 100.00  100.00  

4. Considerations 

Regarding the Sentinel-2 sensor, and in the absence of a panchromatic band, the proposed 

methodology displayed satisfactory results by optimizing the spatial resolution from 60 to 10 

meters in the Aerosol(1), Water-Vapor (9) and Cirrus(10) bands. It is, however, worth 

mentioning that the segmentation process was impacted by the direct spatial influence of the 

Red (4), Green (3), Blue (2) and NIR (8) bands of this sensor as an inherited property of the 

multiresolution algorithm. As a result, any possible radiometrically spurious pixels (i.e. speckle 

noise, sun glint and/or bad digital number-DN values) in these bands possibly directly 

influenced the shape of the resulting optimized band. Nonetheless, the information in the 

resulting image was derived from the same band in which the radiometric statistical mean was 

extracted. Thus, it is possible to assume that only the spatial information of the resulting pseudo-

spatially optimized band was compromised by any lacking radiometric information from those 

bands. 

Furthermore, the image segmentation extracted the mean value of all the pixels inside a 

given image segment, which means that this method causes a generalization of the spectral 

information intra-segment. That generalization is not recommended for spectral image analysis 

purposes (i.e. atmospheric correction), but only for object-based image analysis (OBIA) and 

other methods that make extensive use of the spatial resolution of the sensor imageries. 
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As of the semi-automatic image classification results, the development of an automated alert 

system for detecting sand pits in Amazonia is realistic and could provide spatial information for 

environmental agencies to regulate this activity. Future analysis will encompass the statistical 

validation of field data and radiometric characteristics for impact assessment. The final results 

for this working in progress methodology where overall satisfactory and could also be 

implemented in similar scenarios where panchromatic sensor data is non-existent. 
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