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ABSTRACT

With population and food consumption continuously growing,
the demand for efficient agricultural crop monitoring
systems has been increasing in the last years. Crop
dynamics are inherently complex and to model them both
spatial and temporal context have to be considered. The
increasing availability of timely, precise and cost-effective
Remote Sensing data along with the recent development
of deep learning techniques for image analysis open up
new possibilities for crop monitoring. Motivated by this
context, this work presents a comparative analysis of three
deep learning architectures for crop recognition: Fully
Convolutional Networks, Recurrent Neural Networks and
Convolutional Recurrent Neural Networks. The paper reports
the results of experiments performed over two datasets: a
temperate region near Hanover, Germany and a sub-tropical
region in Campo Verde, Brazil. Only SAR data from Sentinel-
1 satellite was considered because it is marginally affected
by atmospheric conditions. The experiments showed that the
tested models achieved state-of-the-art performance.
Key words – Convolutional Recurrent Neural Networks, Fully
Convolutional Neural Networks, Recurrent Neural Networks,
Crop Recognition, Multi-Temporal Analysis.

1. INTRODUCTION

The demand for efficient, comprehensive and precise
agriculture intelligence has significantly increased during
the past years due to several reasons. For instance, it is
necessary to increase the production, in order to feed the
nine-billion people predicted by mid-century, as well as
to reduce the environmental impact. In this context, crop
production information is very important, since it can be
used to develop commercial plans, regulate internal stocks
and perform customized management decisions [1]. Remote
sensing imagery has increasingly been applied for this task,
being considered as a cost-effective way for gathering timely,
detailed and reliable information over large areas [2].

Crop recognition is challenging because some fields are
covered with different types of crops during the year
and such practice may be influenced by multiple factors
including phenological, ecologic or economic changes.
Thus, agricultural areas are characterized by their temporal
dynamics as well as their typical spatial patterns [3]. A
commonly used method consists of stacking the multi-
temporal sequence of images together and training a
classifier using information from each individual pixel, but it

generally neglects any spatial relationship among neighboring
pixels. Alternatively, probabilistic graphical models, such as
Conditional Random Fields (CRF), have been applied to crop
recognition [4]. They are able to capture spatio-temporal
context. However, the methods based on CRF tested so far
rely on hand-crafted features.

In the recent years, deep learning models have made
breakthroughs in several fields such as speech recognition
and computer vision [5]. In remote sensing, these models
have also been successfully tested in diverse applications [6].
Such models can be roughly grouped in two main categories:
Recurrent Neural Networks (RNN), mostly to model temporal
data sequences, and Convolutional Neural Networks (CNN)
for understanding spatial context.

Two different RNN models, Long short-term memory
(LSTM) and Gated Recurrent Unit (GRU), were applied in
[7] for crop classification upon multi-temporal Sentinel-1
data. A similar work is presented in [8], where a Recurrent
Convolutional Neural Network was used for the same
purpose. In this case, a RNN and CNN were combined by
applying a convolutional layer at each image of the sequence.
Another type of CNN and RNN combination, known as
Convolutional RNN, was applied for crop recognition in [9].
However, this work was based on optical images and tested
only data from a temperate climate. In another work ( [10])
a variant of the prior method, called Convolutional LSTM
networks (ConvLSTM), were designed to model jointly the
spatial and temporal context by replacing the LSTM input-
to-state and state-to-state layers by convolutions. In [11],
a different network model, known as Fully Convolutional
Networks (FCN), was applied for multi-temporal crop
recognition from SAR images.

The present work fits in this research line and aims to
assess the performance of three deep learning architectures
for multi-temporal crop recognition upon SAR data: FCNs,
LSTMs and ConvLSTMs. As baseline we present the results
obtained by the commonly used image stacking approach
[12]. The experiments were conducted over two study areas
with very different weather conditions: the first one located
in Hanover, Germany with a temperate climate; the second
one from a sub-tropical region in Campo Verde municipality,
Brazil. To the best of our knowledge, this is the first time a
ConvLSTM is used for multitemporal crop recognition in a
sub-tropical region.

The remainder of this paper is organized as follows:
Section II explains the concepts of LSTM, ConvLSTM
and FCN, while describing the assessed methods for crop
recognition. In section III, the study areas and the 2466



Figure 1: LSTM structure diagram (Taken from [8])

experimental protocol are described. Then, the experimental
results are discussed in Section IV and, finally, conclusions
are summarized in Section V.

2. METHODS

This section describes the methods based on LSTM and FCN
as well as the traditional image stacking (IS) approach used
in this analysis as a baseline. We briefly address the main
concepts of LSTM, ConvLSTM and FCN models. For further
details about deep learning networks, including the basics of
CNNs and RNNs, we refer to [13].

2.1. Image stacking (IS)

This method consists of computing hand-crafted features for
each image in the multitemporal sequence and stacking them
all together, to obtain a feature vector for each pixel that
comprises the whole data sequence at that location. The
resulting representation is then used to train a classifier that
assigns a class label to each pixel.

2.2. LSTM for patch classification (LSTM-PC)

Recurrent Neural Networks (RNN) are a type of neural
network designed for processing sequential data. These type
of models are considered the state-of-the-art in temporal
modeling tasks [14]. In particular, LSTMs are a special
type of RNN that are capable of modeling both long and
short term time dependencies. The main improvement in
relation to traditional RNNs is a memory cell Ct, which can
be accessed, written and cleared by trainable gates (see Figure
1). Specifically, the model uses an information gate it to
select which information is added to the cell, a forget gate
ft to discard useless previous knowledge and an output gate
ot to decide whether the cell contents will be propagated to
the final state ht.

Inspired by the RNN model presented in [8], we designed
a LSTM-based architecture for patch classification (LSTM-
PC). Each pixel at a given date was represented by a w ×
w × c dimensional feature vector that results from flattening
the w by w by c patch centered at that pixel, where w
refers to the spatial dimensions and c stands for the number
of polarizations. First, the sequence of feature vectors
representing a pixel location along all dates in the sequence
passes through a basic LSTM cell. Then its last output
is gathered and passed to an intermediate Fully Connected
(FC) layer followed by a softmax layer. In each case, the

predicted class is assigned to the input’s central pixel and the
inferred image is constructed by concatenating spatially the
classification results.

2.3. ConvLSTM for patch classification (ConvLSTM-PC)

LSTM’s major drawback in handling spatial data is the usage
of FC layers for its input-to-state and state-to-state transitions,
which do not take spatial context into account. To overcome
this limitation, a ConvLSTM cell takes the original LSTM
(Figure 1) and replaces the input xt, hidden state ht and cell
output Ct with 3D tensors whose first two dimensions are
spatial dimensions (rows and columns), as opposed to feature
vectors from LSTM [10].

Similarly to LSTM-PC, each pixel from a given date is
represented as an image patch of dimensions w × w × c
which is centered around that pixel. At first, the sequence of
image patches representing a pixel location is passed through
a ConvLSTM cell. Then the sequence’s last image is selected
and max. pooling is applied. The result is flattened and taken
to the following FC and softmax layers. As in the previous
model, inference is achieved with a spatial concatenation
from the predicted values.

2.4. FCN for patch labeling (FCN-PL)

Typical CNNs contain fully connected (FC) layers that
don’t consider the spatial information, producing non-spatial
outputs. FCN removes the final classification layer from
the CNN and converts all the fully connected layers into
convolutional ones. In this way, the final output becomes a
classification map with spatial dimensions.

A fully Convolutional DenseNet [15] implements a
downsampling path, which extracts coarse semantic features,
followed by an upsampling path responsible for recovering
the input spatial resolution in the final output (Figure 2).
In this architecture, Dense Blocks (DB) are of a sequence
of convolutional layers with multiple bypassing connections
among them. Transition Down (TD) blocks are composed
of a convolution and a downsampling operation, while a
Transition Up (TU) block performs an upsampling operation,
typically a transposed convolution. Skip connections are used
between downsampling and upsampling stages.

The input for FCN-PL the stack of spatially corresponding
patches through all dates of the multi-temporal sequence,
resulting in a tensor of size (w,w, c × T ), being T the
sequence length. The network is called full patch labeling
(PL) because the output of the network is the set of labels
from the whole patch and not only the central pixel. At
inference time, patch-wise outputs are spatially concatenated
to form the final classification mosaic.

3. EXPERIMENTS

3.1. Study Areas

Two study areas with different agricultural practices and crop
dynamics were selected for our experiments. The first area is
located in the surroundings of Hanover city, in Germany. It
has an extension of 1728 km2 and consists of a sequence of 2467
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Figure 2: FCN-PL architecture. Circles represent concatenation. (DB: Dense block, TD: Transition down, TU: Transition up, Conv.:
Convolutional layer)

Figure 3: Class distribution from Campo Verde dataset.

24 SAR images, dual-polarized from Sentinel-1 satellite taken
from October 2014 to October 2016. A key characteristic of
this area located in a temperate region is that each parcel has
single crop class throughout the entire agricultural year [16].

The second test area is located in Campo Verde
municipality, in the state of Mato Grosso, Brazil with an
extension of 4782 km2. It consists of a sequence of 14
SAR images from Sentinel-1, dual polarized, acquired from
October 2015 to July 2016. In contrast to the first area, it is in
a tropical region where crop rotation and different agricultural
practices are adopted. Its highly dynamic behaviour makes
the modelling of different crops more challenging than in
the Hanover site [17]. In our experiments the Campo Verde
data set was split in two sequences, each corresponding to a
different crop cycle (See Figure 3).

3.2. Experimental Protocol

The results presented in the next section refer to the last
date of the temporal sequence, using the data of all previous
dates. The parcels were randomly separated in training and
testing groups, each one having 50% of all pixels. Each
feature vector component was normalized to zero-mean and
unit variance. The patch sizes were empirically selected as
5×5 and 15×15 for Hanover and Campo Verde, respectively.

For the IS model we used a Random Forest with 250 trees
and a maximum depth of 25. As handcrafted features for the
IS approach we used the correlation, homogeneity, mean and
variance extracted from GLCM matrices computed for four
directions (0, 45, 90 and 135 degrees).

Different from [8], we chose to work with the original
values in each polarization as input for the RNNs, instead of
the GLCM features. This decision was based on preliminary
experiments results. Additionally, as explained in Section 2,

an intermediate Fully Connected layer was added in order to
further improve the performance.

For LSTM-PC and ConvLSTM-PC, 100 and 16 filters were
used in the recurrent layers respectively. In both cases, the
intermediate FC layer was configured with 100 filters for
Campo Verde and 300 for Hanover. In ConvLSTM-PC, max.
pooling was not used for Hanover. All the input patches were
extracted with stride 1.

For FCN-PL, input patches of size 8 × 8 and 32 × 32
were empirically selected for Hanover and for Campo Verde,
respectively. The DenseNet was configured with a growth rate
of 16, two convolutional layers per block, average pooling
as downsampling operator and 20% dropout. The DenseNet
architecture is described in Table 1, where w is the patch
width/height for each database. This model was trained with
non-overlapping patches.

Data augmentation was applied to minority classes through
rotation, and horizontal and vertical flip. In Campo Verde and
Hanover, respectively, 500 and 300 samples per class were
used for FCN-PL, while 50000 and 30000 samples per class
were used for IS, LSTM-PC and ConvLSTM-PC.

Early stopping regularization was adopted for training.
Adam optimizer with learning rate of 0.001 and mini-batches
of size 128 were used for the recurrent networks. Adagrad
with 0.01 learning rate and mini-batches of size 32 were used
for FCN-PL.

Table 1: FCN-PL architecture.

Layer Output Dimensions #Filters
Input w × w 48

DB (2 layers) w × w 80
Downsampling w/2× w/2 80
DB (2 layers) w/2× w/2 112

Downsampling w/4× w/4 112
DB (2 layers) w/4× w/4 32
Upsampling w/2× w/2 144
DB (2 layers) w/2× w/2 32
Upsampling w × w 112

Conv. w × w #classes
w stands for the input patch width/height: 8 for Hanover
and 32 for Campo Verde.

4. RESULTS

Results are shown in Table 2, in terms of Overall Accuracy
(OA) and Average class Accuracy (AA). Values in bold
correspond to the best accuracies for each dataset. The
baseline model (IS) achieved significantly better results than
the ones reported in [12] for Campo Verde dataset. This can
be explained by the use of different patch sizes. However,
even with these improvements, the deep learning variants
outperformed the baseline in both metrics for both datasets. 2468



Table 2: Results from both datasets in terms of Overall
Accuracy (OA) and Average class Accuracy (AA)

Dataset Campo Verde HanoverSequence 1 Sequence 2
Layer OA AA OA AA OA AA

FCN-PL 81 75.6 73.9 69 91.9 88.5
ConvLSTM-
PC 80.5 75.9 70.4 66.4 93.7 90.2

LSTM-PC 80.1 74 72.2 69.2 91.9 85.9
IS 79.1 68.1 71.1 65.9 86.1 77.4

By and large, the FCN-PL architecture delivered the best
accuracies among the tested approaches for Campo Verde
dataset, while the ConvLSTM-PC attained the highest scores
for Hanover. Parcels are larger in Campo Verde than in
Hannover. Thus, spatial context tends to be more important
in Campo Verde, which might be beneficial for FCN-PL. On
the other hand, the number of temporal images in Hanover
dataset is more than three times larger than in the Campo
Verde dataset. This might be an indication that this approach
tends perform better as the sequence length increases.

Both recurrent networks presented similar performance
values both in terms of OA. As for AA, the results do
not allow identifying any clear superiority between them.
Notice that ConvLSTM-PC presents the highest performance
for Campo Verde sequence 1 and for Hanover, but is
outperformed by LSTM-PC for Campo Verde sequence 2.

Finally, both LSTM-PC and ConvLSTM-PC presented
better results than the ones reported in [8] for Campo Verde.
This might also be due to architecture modifications, such as
the use of larger patches, and to an additional FC layer.

5. CONCLUSIONS

In this work, some of the most successful deep learning
architectures for multi-temporal crop recognition were
implemented; tailored to the specific dataset requirements;
and compared. Their performance was assessed over two very
different datasets.

One of the main contributions of this work is the
classification improvement for IS, LSTM-PC and
ConvLSTM-PC achieved by finding their most appropriate
parameter values in each study area. Results indicate that the
abilities to represent spatial semantics from FCN-PC might
be better harnessed in areas with larger crop tile sizes like
the ones from Campo Verde. Likewise, the spatio-temporal
modeling properties from ConvLSTM might be more relevant
for datasets with larger time sequences.

Future works will focus on combining both architectures
into a fully convolutional recurrent network, and the use of
other FCN and RNN structures.
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