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ABSTRACT 
One of the most remarkable breakthroughs of Remote        
Sensing lies upon the devise of CubeSat standard. Such         
technology open up a myriad of possible applications that         
benefit from the higher spatio-temporal resolutions      
delivered by constellations of CubeSat compliant      
nanosatellites. Within this scenario, one has to investigate        
the new challenges and how to tackle them in order to           
harness this new kind of Remote Sensing Big Data. Among          
these challenges is the development of the means to extract          
useful information of pixels' observations throughout time       
in a fine-grained fashion. This work is a seminal study on           
using a special kind of deep learning approach, namely,         
deep Recurrent Neural Networks, for classifying long       
time-series of landcover's observations. The method was       
tested against the problem of identifying pastureland areas        
over high-res imagery from PlaneScope, a constellation of        
CubeSat nanosatellites. A discussion concerning limitations      
and capabilities of the proposed approach are also presented. 
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1. INTRODUCTION 
 
The increasing number of sensors orbiting the earth is         
systematically producing larger volumes of data, with better        
resolutions in both the spatial and temporal dimensions [1].         
This trend can be noted by the rise of the so called CubeSat             
constellations, in which many nanosatellites, a.k.a nanosat,       
are deployed to operate in concert, sharing the same goal: to           
provide better land surface coverage, as well as higher         
revisit frequency [2].  

In the wake of the great cost benefit brought by          
CubeSat constellations, Planet Labs Inc. deployed more than        
130 cheap CubeSats [3], known as PlaneScope       
constellation, which has a near daily basis revisit rate at          
nadir and high spatial resolution of around 3~5m. Although         
the unprecedented improvements of spatio-temporal     
resolutions, the main downsides of nanosat technologies are        
the poor radiometric quality and cross-sensor      
inconsistencies [3]. 

To deal with the high degree of details provided by          
CubeSat constellations, as well as with the low radiometric         
quality, more accurate machine learning techniques, such as        
deep learning (DL), are required to transform raw data into          
useful information [4]. Concerning spatial resolution, some       
DL architectures (i.e. Convolutional Neural Networks and       
its variants) rely upon only spatial dimensions to perform,         
for example, land-cover/land-use (LCLU) maps,     
disregarding the temporal dependencies between pixels      
observations over time [5]. 

Remote Sensing (RS) data with high temporal       
resolution (e.g. PlanetScope, Sentinel 2) may provide more        
consistent time-series that can be used, for example, to         
identify important LCLU classes like crop, pastureland, and        
grasslands. Due to seasonality and the phenological aspects        
that characterize these targets, an approach able to recognize         
patterns in their temporal signatures benefits from the        
fine-grained temporal detailing.  

This potential can be explored using deep       
Recurrent Neural Networks (RNN), a specific family of DL         
approaches able to take all available observations       
throughout time into account. This way, latent information        
that lies between all the pixel's observations become        
intelligible, making possible to extract it from time-series        
directly and boosting a model's capability of recognizing        
temporal patterns.  

This work presents an implementation of a       
specialized kind of RNN called Long Short Term Memory         
(LSTM) to classify pixels' time-series from Planet Labs        
imagery in order to identify pasturelands. It is a first trial,           
aimed to validate a novel approach to extracting temporal         
information from high resolution imagery through DL       
algorithms. In this sense, more improvements has to be         
taken for the approach to become operational. The model's         
accuracy and spatial consistency of the produced map were         
evaluated and a discussion concerning limitations and       
capabilities of the proposed methods are also provided. 

 
2. DATA AND METHODS 

 
In order to investigate the feasibility of using deep RNNs to           
classify SR time-series, a pastureland mapping has been        
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performed. As a proof of concept, the mapping considered a          
reduced area comprising the Itapirapuã brazilian      
municipality, a Cerrado region located in the center-west of         
the state of Goiás, in which cattle ranching is the main           
economic activity. This choice was motivated assuming the        
premise that the phenological patterns of pasturelands can        
be easily recognized by a human interpreter as well as a           
deep RNN, as the seasonality of the chosen region is easily           
recognizable due to presence of dry and wet seasons.  

The mapping has been performed using high-res       
PlanetScope imaging in which each pixel covers       
approximately a land surface area of 9 (3x3) m2, and has a            
revisiting rate of about 1 to 2 days. Images dating between           
01/08/2017 and 31/12/2017 that intercept the region of        
interest were acquired through Planet Explorer using the        
following filters: less than 1% of cloud cover; area coverage          
(considering all images within a day) greater than 99%; and,          
data source equals to "4-band PlanetScope Scene". All        
images that composes the daily scenes that meet the filters          
criteria were downloaded and processed to create 52 daily         
compositions with four spectral bands (i.e. blue, green, red,         
and near infrared). It is worth mentioning that the         
availability distribution of images throughout time wasn’t       
uniform, since the wet season begins around October and         
cloud cover is higher within this period. Also, many days          
didn't meet the “area coverage” criteria for the study region          
and were then neglected.  

The proposed approach required a set of training        
data compatible with the spatial resolution of PlanetScope        
images. In this direction, a protocol for picking up training          
points and its corresponding time-series was developed.       
The first thing to be considered in this scenario is to increase            
the number of training samples in order to better represent          
the actual distribution of the pixels’ time-series within the         
feature space regarding the region of interest. The daily         
compositions were used to select, by visual inspection, a set          
of sample points, shown in figure 1, as described below: 

1. Using a Landsat based reference map, 2300 points        
were randomly drawn over pasture areas and 2300        
points over  non-pasture areas; 

2. The first stage of visual inspection, using       
PlanetScope images and / or Google Earth,       
corrected badly placed points of pasture and       
non-pasture classes (due to the use of a reference         
map with coarser spatial resolution, i.e. 30m); 

3. The second visual inspection compared the first       
and last daily composition aiming to move the        
points to areas without LCLU change in the period; 

4. The third visual inspection balanced the training       
points between pasture and non-pasture subclasses,      
such that more prevalent subclasses points were       
moved to less incident subclasses. 
 

 
Figure 1. Sample set, grazing points in green and not pasture 
in yellow, used to train and evaluate the LSTM model in the 
identification of pasture areas, around the municipality of 

Itapirapuã - Goiás. 
 

The sample set was divided into two subsets:        
training (70%) and test (30%) points, which were crossed         
with the 52 daily compositions to extract the 52 length          
labeled time-series. The elaboration of the model took place         
through several executions and performance metrics      
evaluations (accuracy and loss), as well as visual analysis         
of the classified pasture area. The RNN model was         
implemented using the Keras library and progressively       
refined through continuous training samples adjustments      
until reaching the following architecture and      
hyperparameters: 
●  Architectural layers: 

○ A LSTM cell with 256 hidden units; 
○ A fully-connected output layer with a softmax       

activation function;  
● Loss function: Categorical Cross-Entropy 
● Optimizer: Adam 
● Learning Rate: 0.00002 
● Batch size: 16 
● Number of Epochs: 200 

All the chosen hyperparameters and network’s      
topology were discovered empirically, i.e, there’s no known        
way to find out these technical features a priori, so that           
there must be performed a number of sensitivity analysis         
rounds in order to reach out the optimal set of          
hyperparameters and model’s architecture.  

Tests were performed within a Docker container       
with a Keras-ready environment set up, running on a host          
equipped with 12 CPUs Intel(R) Xeon(R) CPU E5-2620 v2         
@ 2.10GHz and 24GB of RAM. No graphic cards (i.e.          
GPGPU) were used to haste execution of training nor         
prediction phases. The source code used by this study is          
available at https://github.com/NexGenMap/dl-time-series. 
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3. RESULTS AND DISCUSSIONS 
 
The training behavior of the LSTM presented similar loss         
and accuracy curves for training and test datasets (figure 2),          
showing little shift between them and indicating absence of         
overfitting, i.e., a good model's generalization ability. The        
loss curve shows values converging toward approximately       
0.2, suggesting that model's classification efficiency can be        
improved through modifications in the network architecture,       
such as the inclusion of new architectural layers and/or the          
use of regularization techniques (e.g dropout), such that this         
value approaches 0. 
 

 
Figura 2. Loss and accuracy curves, produced during the 

LSTM training process, for (a) training data and (b) test data. 
 
The mapping of pasture areas with LSTM showed        

a good spatial consistency and good separability between        
different land use classes (figure 3), such as tree plantation,          
bare soil, river, lake, natural vegetation, road and urban area          
(figure 3a, 3b and 3d). Specifically in the urban area, only           
grassland and square areas with presence of grass were         
classified as pasture, indicating a potential use of this         
approach, and PlanetScope imagery, for measuring the       
proportion of green area in urban densities. In pasture areas,          
the mapping generally included only pasture pixel with        
presence of shrubby vegetation, maintaining pixels with       
presence of arboreal vegetation as "non-pasture" (Figure       
3c). 

A significant advantage of LSTM - and other DL         
algorithms - in relation to Random Forest and other classical          
machine learning algorithms, is the absence of the feature         
engineering stage. This allowed the use of complete        
time-series, with 52 daily compositions, to find the most         
suitable seasonal patterns for pasture classification, directly       
in the 4 spectral bands. Beyond its ability of dealing with           
long time-series, a LSTM can also identify seasonal patterns         
by even learning new implicit “spectral indices” that are         

more efficient than, for example, handcrafted      
spectro-temporal metrics that make use of NDVI to        
separate pastures from other LCLU classes, like other        
known approaches does. 
 

 
Figure 3. Result of the mapping of pastures, produced by the 

LSTM, in regions of (a) urban area; (b) lakes and natural 
vegetation; (c) foul grass; (d) forestry and unpaved roads. 

Interestingly, in the areas of foul grass, most of the tree 
vegetation was not classified as pasture. 

 
Despite the promising results, the current      

implementation has some limitations with regarding      
spatio-temporal generalization. The model was conceived as       
a proof of concept, so it is very fitted to the region and             
period considered in the experiment. Not all days that         
comprise the chosen period (August to December of 2017)         
satisfy the restraints imposed by the aforementioned filters;        
this incur in a very unbalanced distribution amongst days         
that comply with the constraints and others that do not, what           
makes time-series not chronologically uniform and very       
specific to the region of interest, given a span of time.  

Nothing prevents one to create as much models as         
needed to comprehend a wider region, using the exact same          
implemented approach, but another way to overcome this        
issue is to take timesteps (i.e. daily compositions) with         
presence of nodata values into account by, for example,         
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loosening the area coverage filter. This would make the         
availability distribution of time-series less irregular,      
therefor, make possible to create a model more prone to          
generalization both in space and time. 

 
4. CONCLUDING REMARKS 

 
This study has successfully tested the idea of using a DL           
approach for recognizing temporal signatures in time-series       
extracted from the high-res PlanetScope imagery. This open        
up a wide range of possibilities, one of them is identifying           
LCLU classes that need a more detailed information in order          
to be identified. Another possible application would be the         
ability to accurately identify change detection (e.g.       
deforestation). But there’s no free meal! The great benefits         
of being able to deal with high-res RS data comes at the cost             
of making the very high volume of available information to          
be useful for creating models that are capable to generalize          
in both space and time. As observed, there’s a great          
unbalance in the observations availability distribution      
between distinct instances of analysis, such that, inevitably,        
a good generalizable approach has to be able to consider          
gaps of information in order to be useful in many scenarios. 
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