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ABSTRACT 

 
The objective was to compare two methods for estimating 

aboveground biomass (AGB) in tropical rainforest using 

airborne LiDAR data. The study was conducted at Fazenda 

Cauxi in northern Brazil. Data from LiDAR and field 

inventory collected in 2014 were used. A total of 85 plots 

were used for the modeling. In the R environment, Random 

Forest (RF) and Linear Regression (lm) were compared in 

terms of RMSE, Bias and adj.R² through a LOOCV process 

with 500 replicates. The best performance was verified for 

the LM algorithm. 
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1. INTRODUCTION 

 

Among terrestrial ecosystems, forests sequester and store 

more carbon than any other ecosystem and are an important 

natural ‘brake’ on climate change [1-2]. Tropical forests are 

known as large carbon sinks [3]. Among these Amazon 

rainforest stores one fifth of the total carbon of global 

terrestrial vegetation [4], thus representing the largest carbon 

reservoir in the form of biomass of the planet [4-5]. 

Due to the high growing potential of tropical forests 

in converting atmospheric carbon into biomass, especially in 

comparison to other terrestrial ecosystems, an accurate 

estimate of the rainforest structure and biomass is essential 

for the understanding and management of the global carbon 

cycle [6-7]. However, forest monitoring in tropical regions is 

a challenge, and field surveys are resource demanding and 

very limited in extent and frequency [8]. In remote sensing 

studies, the use of airborne LiDAR data has rapidly become 

prominent in estimating forest biophysical characteristics, 

such as canopy height and basal area [9-10]. In addition, 

airborne LiDAR has been successfully used to estimate 

above-ground biomass in a number of forest ecosystems [10-

13]. 

Regarding biomass modeling, [14] highlight that 

there are several methods used to estimate biomass / tree 

volume, which are varied in their assumptions and 

complexity, such as regression techniques. The authors also 

comment that several studies have demonstrated that 

regression of variables derived from LiDAR and field data is 

an effective method to estimate biomass. Nevertheless, there 

is a large set of premises-specific assumptions and 

considerations that must be made for each study.  

In this sense, Machine Learning techniques may be 

more effective than traditional regression techniques, since 

ML is a rapidly growing predictive modeling area that is 

concerned with identifying structures in complex, often non-

linear data [15]. This paper proposes to compare one 

machine-learning method, Random Forests (RF), to multiple 

linear regression (lm) for tropical forest aboveground 

biomass estimation by using airborne LiDAR data. 

 

2. MATERIAL AND METHODS 

 

2.1 Study area  

 

The study was conducted at the Fazenda Cauaxi in the 

Paragominas Municipality of Pará state, Brazil. Pará state is 

located in the eastern Amazon, where deforestation and 

logging have been integral parts of the economy for decades 

[16-17].  The climate on Fazenda Cauaxi is humid tropical, 

and the total annual precipitation average is 2200 mm [18-19]. 

 

2.2. Field Data 

 

A forest inventory was conducted from 18 February to 25 

April 2014 [20]. A total of 85 plots of 50 × 50 m (0.25 ha) 

were spaced at intervals of 100 m along transects. At each 

plot, all trees with a diameter at breast height (DBH) equal to 

or greater than 35 cm were measured. Inside each plot, a sub-

plot along one side of the plot with dimensions of 5 × 50 m 

(250 m2) was also demarcated. The Equation 1 was used for 

estimating AGB at tree level [21]. 

 
𝐴𝐺𝐵 (𝑘𝑔)  =  exp [𝑎1 − 𝑏2 + 𝑏2ln (𝜌) + 𝑐3ln (𝑑𝑏ℎ) −

𝑑4[ln (𝑑𝑏ℎ)]²)] Eq.1 
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where AGB (kg) is the live tree aboveground biomass in Kg; 

a1 = -1.803; b2 =0.97; c3 = 2.673; d4 = 0.0299; dbh is the 

diameter at breast height (1.30 m); ρ is the wood density, and 

E is a measure of environmental stress. In this study area 

location E = −0.103815. 

 

2.3. LiDAR data  

 

The airbone LiDAR data used in this study were acquired as 

part of Sustainable Landscapes Brazil, a joint project of the 

Brazilian Corporation of Agricultural Research (EMBRAPA) 

and the United States Forest Service (USFS).  For the 

development of the present research we used field data 

collected in the same year. Table 1 presents the flight 

parameters. 

 

Table I. Details of lidar data acquisitions. 

Specifications 2014 

Acquisition date December 26th to 27th 

Datum  Sirgas 2000 

Mean point density  37.5 ppm² 

Flying height  850 m 

Field of view 12 ° 

Measurement rate  83,0 Hz 

Overlay Percentage 65% 

 

2.4. LiDAR data processing 

 

LiDAR data processing was carried out with the following 

sequence of steps using the FUSION / LDV toolkit version 

3.60 software, which allows the analysis and visualization of 

LiDAR data, besides being an efficient processing tool [22]. 

First, the catalog command was used to produce the 

descriptive report of the LiDAR dataset. Then, the 

groundfilter command was used to classify the ground points, 

which is grounded on the filtering algorithm, based on [23]. 

Afterwards, the Digital Terrain Models (DTM) were 

generated using the product of the previous step (the 

classified soil points). In this procedure the grid surface create 

command was used. 

Normalization of the heights was carried out with 

the ClipData command, while the PolyClipdata command 

was used to perform the cut of the measured plots in the field. 

From the CloudMetrics command, the LiDAR metrics 

derived from the plots were extracted. We selected some 

metrics for the modeling, the metrics are shown in Table II. 

LiDAR metrics are often highly interrelated [24-25], 

hence we selected potential original metrics extracted from 

LiDAR point clouds using Principal Components Analysis 

(PCA). The PCA is based on the variance and covariance of 

the data set [26]. 

 

 

 

 

Table II: LiDAR-derived canopy height metrics considered 

as potential candidate variables for predictive imputation 

machine learning models. 

Description 

Height Maximum Height 40th percentile 

Height Mean Height 50th percentile 

Height standard deviation Height 60th percentile 
Height skewness Height 70th percentile 

Height kurtosis Height 80th percentile 

Height coefficient of variation Height 90th percentile 
Height mode Height 95th percentile 

Height 25th percentile Height 99th percentile 

Height variance 
Canopy Cover (Percentage of first 
return above 

Height Interquartil distance  

 

 

2.5. Model Accuracy and Assessment 

We used the “lm” linear model function and "RF" random 

forest algorithm, both available in R [27]. RF is an ensemble 

learning technique that uses multiple decision trees on a 

validation set to generate a statistically prediction based on a 

set of independent variables [28]. While "lm" is used to fit 

linear models, it can be used to carry out regression, single 

stratum analysis of variance and analysis of covariance. 

The methods presented were tested in the R 

statistical environment [27].  Root-mean-square error 

(RMSE), Bias, and adjusted coefficient of determination 

(adj.R2) were calculated to compare the prediction 

performance of different approaches. In our case, the 

coefficients were obtained in a process of Leave-One-Out 

Cross-Validation (LOOCV). 

 

3. RESULTS 

 

PCA indicated that 97.55% of the total variance in the 22 

LiDAR metrics can be explained by the first 6 PCs. 

Therefore, the following metrics were selected for taking part 

of machine learning models: (PC1: Elev. Mean; PC2: Elev. 

CV; PC3: Elev kurtosis; PC4: Canopy Cover; PC5: Elev. 

Mode; PC6: Elev. skewness). Methods used in this study 

presented values of adj. R² close to 70% through the 

validation process (LOOCV). The results of the comparison 

for the methods are seen in (Figure 2). 

 Although the LM algorithm had the best 

performance, the two methods compared presented similar 

performances in terms of RMSE and Bias. The largest 

difference between the algorithms is verified in adj.R², in 

which RF produced a value close to 0.60% while the LM 

produced a value of 70%.  
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Figure 2: Scatter plots of adj.R2, RMSE and bias for the 

AGB leave-one-out cross validation – LOOCV models. 

 

4. DISCUSSION 

 

In this paper, the metrics selected to compose the models are 

in agreement with previous studies [30-31]. In general, the 

great majority of biomass prediction studies indicate that the 

mean canopy height metric is the most significant, which 

corroborates with the PCA result. 

Among biomass prediction factors, the prediction 

method is one of the most important in most cases [30]. RF is 

powerful for empirical modeling using complex data [32] 

such as airborne LiDAR data. However, here RF was not able 

to present superior results in relation to LM. Despite the 

lower RF performance, the algorithm was similar in Bias 

values; according to [31] the bias rarely is considered as a 

parameter to judge the quality of the models in previous 

studies. It is strongly recommended that this be done, since 

both r² and RMSE can suffer notable offset errors when bias 

is not considered [33]. 

A number of studies in different ecosystems found 

RF to be superior to other methods [8,30,34,35]. Thus, the 

lower RF performance in this work might have been 

influenced not only by the number of field plots, but also by 

other factors, such as a robust bootstrapping of data to avoid 

overly optimistic r² values [30]. 

 

5. CONCLUSIONS 

 

The results found in this work show that dealing is a powerful 

and practical tool for rainforest studies. Among the methods 

compared, the LM model provided the highest estimation 

accuracy in terms of higher adj.R², the lowest RMSE and the 

lowest bias. 
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