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ABSTRACT 

 
In November 5

th
, 2015, the Fundão dam’s rupture in 

Mariana, Minas Gerais, Brazil, dumped millions of cubic 

meters of tailing into the river, causing abrupt changes in 

the land cover (LC). Remote Sensing (RS) techniques and 

image analyses allow monitoring LC changes, that can 

contribute for decision making. In this paper we show 

results of LC change detection caused by the disaster 

applying per-pixel and region-based classifiers. For this 

purpose, three CBERS-4/MUX images were independently 

classified to assess LC in different periods: prior the 

incident, right after and its current situation. The per-pixel 

classification distinguished rivers from other classes, better 

than the region-based classification. In addition, the 

changes detected in the LC helped to highlight vegetation 

areas affected by the incident and also to evaluate its 

effects. Furthermore, the analysis was able to identify 

regenerated vegetation areas. 

 
Key words — MUX, CBERS-4, Mariana Disaster, 

classification. 

 

1. INTRODUCTION 

 

In November 5
th

, 2015, the episode of a dam’s rupture in the 

subdistrict of Bento Rodrigues, known as the disaster of 

Mariana, has probably been one of the biggest socio-

environmental tragedies in Brazil. The Fundão dam was 

used with the purpose of depositing mining tailing. The 

tailing from the dam’s rupture was dumped into the Doce 

River and its tributaries crossing 668 km to the Atlantic 

Ocean [1]. The amount of mud and iron waste directly 

affected 39 municipalities from both, state of Minas Gerais 

and Espírito Santo. 

The destruction of the incident was enormous, people 

and animals died, houses and crops were destructed, and the 

water supply was compromised. The mud extended from 

about 1600 ha nearest the water bodies [2], completely 

changing the LC and the integrated ecosystems of the 

affected area. Since every living being depends of the 

natural LC of the Earth’s surface, and the fact that its change 

along the time can reformulate ecosystems [3], the need of 

studies to detect and quantify LC changes is highlighted. 

 RS techniques are appropriate to detect LC changes, 

such as deforested areas, agriculture crops, urban growing, 

and also to provide information for environmental disasters. 

In this case, information derived from RS techniques 

contributes to the disaster’s management and evaluation of 

the environmental impact, allowing risk assessment. It may 

help the decision makers to understand the consequences of 

these events, and propose mitigation acts [4]. 

Many authors have been applying classification 

techniques in order to detect and analyse LC change. Silva 

Junior et al. [4] quantified the land use changes caused by 

the Mariana disaster using the Unmixing Spectral Linear 

Model to separate vegetation, soil and shade and the 

Enhanced Vegetation Index (EVI) and the Normalized 

Difference Vegetation Index (NDVI) to evaluate vegetation 

changes.  

Classification can be divided in per-pixel and region-

based methods. The traditional per-pixel classification 

utilizes only spectral information [5], while region-based 

classifiers consider image segmentation and subsequent 

classification or object labelling. Segmentation identifies 

homogeneous regions and considers spectral reflectance 

variability as an attribute for discriminating features [6].  

Thus, the objective of this work is to apply per-pixel and 

region-based classification techniques to evaluate the impact 

caused by the Mariana disaster in the LC, as well as to 

evaluate if changes in LC are taking place again with the 

regeneration of the vegetation. 

 

2. MATERIAL AND METHODS 

 

The study area extends for approximately 73 Km 

(kilometres), from the Fundão dam downstream to the rivers 

“Gualaxo do Norte” and “Do Carmo” (Fig. 1).  In this study, 

a 500-meters buffer were created around these rivers in 

order to delimitate the areas to be analysed. 

In order to analyse the LC change after the Mariana 

disaster CBERS-4 images acquired by MUX camera were 

used. The MUX sensor counts with four bands, B5, B6, B7 

and B8, which respectively correspond to the spectral 

resolutions of 0.45-0.52 μm  (blue), 0.52-0.59 μm (green), 

0.63-0.69 μm (red), 0.77-0.89 μm (NIR - Near Infrared). The 

sensor’s spatial resolution is 20 m, temporal resolution is 26 

days and radiometric resolution is 8 bits. The images were 

obtained in the INPE’s digital image catalogue [7].  
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Figure 1. Location map of the studying area. 

 

The methodology adopted in this paper is presented in 

Fig. 2. Three CBERS-4/MUX images were selected in the 

acquisition dates, 2015-10-04, 2016-02-11 and 2017-08-10. 

The criterion adopted for selecting these images was based 

on the low cloud-cover in the study area, and also on the 

proximity to the date in which the event occurred. These 

dates allowed to establish a scenario related to the situation 

before, shortly after and after the Mariana Disaster. 

 

 
Figure 2. Flowchart of the procedures performed. 

 

After data selection, the next step was to apply 

preprocessing operations. This stage was divided into two 

main phases: the transformation of the images to top of 

atmosphere reflectance images and the application of 

atmospheric correction [8]. The RS images were classified 

considering two classification approaches: a per-pixel 

classification, using Artificial Neural Networks (ANNs); 

and, a region-based classification, using a region-growing 

algorithm to segment the image and a decision tree 

classifier. The per-pixel classification procedures were 

developed using the ENVI software. The per-region 

approach was carried out using the TerraView software and 

the GeoDMA plug-in [9]. 

The segmentation method used in the procedure is a 

region growing algorithm [10]. In this process, the algorithm 

considered a Euclidian distance and a minimum area of 50 

and 20 pixels, respectively. These parameters were 

empirically chosen after performing several tests. In 

addition, training samples were collected in order to 

represent the following classes: soil (or sediments), 

vegetation and water. The samples acquisition was 

performed using the false-colour RGB composition, R: 

B6(green), G: B8(NIR), B: B7(red), in order to favour the 

targets identification. Table 1 shows the number of samples 

collected per class. Part of the samples (40%) was reserved 

to calculate the overall accuracy, as a validation method of 

the classifications. 

 
Table 1. Number of collected samples. 

Classification Classes 
Samples 

2015-10-04 2016-11-02 2017-08-10 

Per Pixel 

Vegetation 865 1247 1152 

Water 162 107 240 

Soil 322 339 265 

Per Region 
Vegetation 178 80 45 

Soil 35 247 66 

 

Finally, after classifying all the images using both 

classifiers, an arithmetic operation of subtraction was 

applied. The subtraction between the classification results 

produced from 2016-02-11 and 2015-10-04 images enables 

the identification of immediate changes caused by the 

disaster. In addition, it is possible to highlight areas of 

vegetation regeneration by applying the subtraction 

operation between the immediate changes result and the 

2017-08-10 classified image. This process was 

independently performed to both classification results. 

 

3. RESULTS AND DISCUSSION 

 

Considering samples validation, the overall accuracy for 

per-pixel classifications was 99.48%, 98.93% and 99.27% 

for 2015-04-10, 2016-02-11 and 2017-08-10, respectively. 

The overall accuracy obtained for region-based 

classifications were 92.86%, 91.53%, 95.45% for the 

respective dates. Fig. 3 details an excerpt from the study 

area near the Fundão dam. 

The per-pixel and per-region classification results 

showed a significant difference in the water class 

identification. The ANNs classifier was able to distinguish 

narrow river’s stretches (Fig. 3a), better than the region-

based classification algorithm (Fig. 3f). However, the per-

pixel classifications (Fig. 3a, b and c) presented areas with 

isolated pixels, which does not occur in the per-region 

classifications (Fig. 3 f, g and h). 
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Figure 3. Details of the per-pixel (a, b, c) and region-based classification (f, g, h) in near the Fundão dam area for previous (2015-

10-04), posterior (2016-02-11) and recent (2017-08-10) images. Areas that changed from vegetation to soil with the disaster (d, i) 

and those affected areas that vegetation regenerated (e and j).

 

In both classification results of shortly after the disaster, 

the waterways weren’t well distinguished from the soil’s 

class. The entire Gualaxo do Norte River was classified as 

soil, and only part of the Do Carmo River was identified as 

water. This is probably due to the large amount of sediment 

in the river, which presents similar spectral response to the 

soil in the MUX spectral regions (visible and near infrared). 

Thus, both classifiers registered the enlargement of the 

soil’s class (Fig. 3d and Fig 3i) due the riverside sediments 

gathering and the high presence of residue in water. 

The 2017-08-10 image classifications identified some 

vegetation regeneration, highlighted in Fig. 3e and Fig 3j. In 

this case, the per-pixel result reveals some changes in the 

watercourses, as observed in Fig. 3e. Although after the 

disaster river stretches become wider, the region-based 

classifier still couldn’t satisfactorily discriminate these 

rivers. Therefore, there is a greater number of areas that 

were affected by the disaster and then returned to being 

vegetation in the per-pixel classification. 

Analysing the dynamics from pre to post-disaster, areas 

that changed from vegetation to soil were detected as 1430.3 

ha (hectares) and 1311.5 ha, respectively by per-pixel and 

region-based classifications (Fig. 4). It occurred mainly due 

to the mud dumped into the river affecting the riverbed and 

banks (Fig. 3d and 3i). There also was a transition from soil 

to vegetation of 1803 ha and 1789 ha (Fig. 4) for per-pixel 

and region-based classifications, respectively. This change 

is attributed to the vegetation seasonality. 

In the per-pixel classification, 780 ha changed from 

water class to soil class, between before and after disaster 

period, and 786 ha seem to have changed from soil to water 

from post-disaster to current date. River region classified as 

soil occurs due to the high sediment concentration, as 

discussed previously. 
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Figure 4. Sankey diagram for comparing the LC dynamics in 

three times intervals defined by LC maps produced by 015-10-

04, 2016-02-11, 2017-08-10 images using the per-pixel and 

region-based classification. 

 

A total of 707 ha changed from soil class to vegetation 

class, considering the per-pixel classification, from the post 

disaster picture to the recent image. Nonetheless, only 475 

ha were vegetation (before scenery), then changed to soil 

(after), and returned to vegetation (current scenery). 

Evaluating the same situation, for the region-based 

classification, these values are lower. The total change from 

soil class to vegetation was 271 ha, but only 204 ha were 

identified from the areas affected by the sediment. 

As shown in the Sankey diagrams, the per-pixel results 

gives more detail about the area dynamics. However, the 

isolated pixels can distort the results, which is probably 

what happened to the water portion that seems to change to 

vegetation and change back to water. The per-pixel 

classification also shows some small vegetation and soil 

areas that flooded shortly after the disaster and changed 

back to vegetation over time.  

 

4. CONCLUSION 

 

The use of per-pixel and region-based classification 

techniques in CBERS-4/MUX images enable the analysis 

and quantification of LC changes caused by the Mariana 

Disaster in the studying area. It shows that MUX images can 

be used in disaster monitoring. In the region-based 

classification results, it was not possible to differentiate the 

class water from the class soil for the study area. The 

number of classes and the waterways identification is 

limited due to CBERS-4/MUX images spatial resolution of 

20 meters. In the post-disaster image it was also not possible 

to distinguish the river from the soil in areas affected by the 

mud as a result of the sediment load in water. To facilitate 

this discrimination it would be important to use spectral 

information of the studying area in the shortwave infrared. 
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