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ABSTRACT 

 

Soil moisture can be estimated by three approaches using 

remote sensing techniques, optical, thermal, and microwave 

methods. The use of optical methods has the advantage of 

relying only on data from optical sensors, which have high 

availability, high spatial and temporal resolution, and don’t 

rely on field collected data. For example, the OPTRAM 

(Optical Trapezoid Model) is based on a linear relationship 

between soil moisture and a transformed short-wave infrared 

(STR) reflectance, and hypothetically requires only one 

parameterization for a region, and can be reproduced on 

different dates, being invariant to the time of data acquisition 

[1]. In this context, the objective of the present work is to 

evaluate different methods for the parameterization of the 

trapezoidal model to estimate soil moisture. 

Keywords — Orbital remote sensing; Soil moisture; 

Sentinel-2; OPTRAM. 

 

1. INTRODUCTION 

 

The determination of soil moisture is a challenge for several 

areas of knowledge, from those applied to precision 

agriculture, to other studies that seek to associate such 

parameters with other variables of the soil interface and 

atmosphere, in order to understand the distribution of 

moisture on the surface.  

Soil moisture can be estimated through three approaches 

using remote sensing techniques, optical, thermal, and 

microwave methods. The use of microwave sensors on board 

satellites already presents robust methodologies for 

estimation of soil surface moisture at global scales, however 

the scale reduction is necessary for its application in 

hydrological processes and agriculture [2]. The hypothesis is 

that this limitation can be overcome through the use of optical 

methods, which has the advantage of being dependent only 

on data from optical sensors that are numerous and provide a 

big amount of data in high spatial and temporal resolution [1]. 

One of the available methods for estimating soil 

moisture from optical remote sensing is the OPTRAM, 

proposed by [1], which is based on a linear relationship 

between soil moisture and transformed short-wave infrared 

reflectance (STR) [3], and hypothetically requires only one 

parameterization for a given region. In order to obtain soil 

moisture values from the OPTRAM, a pixel distribution with 

the normalized difference vegetation index (NDVI) and STR 

values is used. It is expected that the distribution of pixels 

will form a trapezoidal shape, due to the linear relation 

between water content in soils and vegetation. 

As a recent model, it is necessary to carry out further 

studies on the behaviour of OPTRAM in different regions [1], 

using different methods in their parameterization to evaluate 

which would be the most indicated in each situation. 

Considering this need, the present work has the objective of 

evaluating different parameters in the calibration of the 

OPTRAM model to estimate soil moisture in a centre pivot 

irrigated agricultural area, cultivated with annual crops. The 

parameters analysed will be the number of scenes used, the 

size of the pixels, and the use of masks in the scenes to 

remove non-agricultural areas. 

 

2. MATERIAL AND METHODS 

 

The study was carried out in an intensive agricultural area 

located in Campo Novo do Parecis, state of Mato Grosso, in 

the Center-West Region of Brazil. It is located at the 

coordinates 13º40'31"S, 57º53'31"W.  

A total of 9 Sentinel-2, level 1C images, between the 

dates of July 19, 2017 and July 14, 2018 were used. The total 

extent of the scenes were used in the parameterization of the 

model, while for the elaboration of the humidity map, it was 

used only a fragment of the image of May 25, 2018. 

After obtaining the images, the atmospheric correction 

was performed through the Sen2Cor [4] application in 

conjunction with the SNAP software. To make the bands of 

the images compatible with each other, the resampling of the 

bands with spatial resolution of 20 and 60 meters for a pixel 

size of 10 meters were made, since it is the smallest resolution 

available in four bands of an image of the Sentinel 2 satellites. 

After that, operations were performed between bands to 

obtain the STR and NDVI indices, according to Equations 1 

and 2, respectively: 

𝑆𝑇𝑅 =  
(1−𝑅𝑆𝑊𝐼𝑅)

2

2∗𝑅𝑆𝑊𝐼𝑅
                                        Equation 1 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                                    Equation 2 

For the parameterization of the OPTRAM, 5 scenarios 

were created as described below: 

• Use of 9 images using a pixel size of 120m. It was 

considered as the reference map [1]; 

• Use of 9 images with pixel size of 60m; 

• Use of 9 images with pixel size of  10m; 

• Use of 4 images with pixel size of  120m; 
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• Use of 9 images, without the removal of non-

agricultural areas, with pixels size of 120m. 

The processes performed in this work, from obtaining 

the images to the creation of the soil moisture maps are shown 

in Figure 1. 

 
Figure 1. Flow chart of the carried out processes in this study. 

To obtain images with larger pixel sizes than 10 meters, 

resampling were made by adopting the method of medians, 

which gives the new resampled pixel the median value of all 

pixels inside its area. 

The separation of the agricultural areas from the others 

was done through based on the MapBiomas land use 

classification map for the year 2016. Even with the 

discrepancy between the years of MapBiomas map and the 

images analyzed in the present study, a visual assessment 

indicated that the use of these data was adequate to obtain the 

mask of agricultural areas. 

After treating the images for each scenario, scatter 

graphs of pixel dispersion of the STR and NDVI images were 

generated. From the visual interpretation of each dispersion 

graph, the necessary coefficients were obtained for the 

parameterization of the model. Figure 2 illustrates the 

interpretation of the dispersion of pixels in the graph. 

 
Figure 2. Theoretical dispersion of STR and NDVI pixels to the 

acquisition of the parameterization coefficients, iw (wet edge 

intercept), sw (wet edge slope), id (dry edge intercept), and sd 

(dry edge slope). Taken from [5]. 

After obtaining the coefficients, Equation 3 was applied 

to obtain the normalized soil moisture index.  

𝑊 =
𝑖𝑑+𝑠𝑑∗𝑁𝐷𝑉𝐼−𝑆𝑇𝑅

𝑖𝑑−𝑖𝑤+(𝑠𝑑−𝑠𝑤)∗𝑁𝐷𝑉𝐼
              Equation 3 

The data were analyzed through the descriptive statistics 

of the normalized soil moisture (W) maps and the Wilcoxon 

test, comparing a stratified random sample of 120 points in 

the maps obtained, in order to evaluate if there were 

significant differences between the alternative scenarios and 

the reference scenario. 

 

3. RESULTS 

 

The scatter graphs generated for each scenario presented, in 

most cases, a higher concentration of points in the region of 

STR values between 0 and 6. Only the scenario of 9 Images 

10m presented higher occurrence of pixels with higher STR 

values in the NDVI region of less than 0.8 (Figure 3). 

 
Figure 3. Scatter graphs of each scenario. The horizontal axes 

represents the NDVI, and the vertical axis the STR. 

From the visual interpretation of each dispersion graph, 

the parameterization coefficients (iw, id, sd and sw), used to 

calculate the normalized moisture estimate (W), were 

obtained (Table 1). 
Table 1. Parametrization coefficients for each scenario. 

 

9 Images 

120m 

9 Images 

60m 

9 Images 

10m 

4 
Images 

120m 

9 Images 
without Mask 

120m 

id 0.0 0.0 0.0 0.0 0.0 

sd 0.9 1.5 1.6 1.6 1.3 
iw 2.8 1.3 1.1 1.2 1.0 

sw 7.7 7.2 6.5 5.8 6.6 
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 With the parameterization coefficients, it was possible 

to produce the normalized soil moisture (W) maps from 

Equation 3 for each scenario (Figure 4). The values of soil 

moisture vary between 0 and 1, being dimensionless due to 

its normalization.  

 
Figure 4. Normalized soil moisture (W) maps for all scenarios. 

From each generated map, the descriptive statistics were 

obtained, in order to perform an exploration of the 

characteristics of the results (Table 2). It is possible to 

observe some differences of average values between the 

scenarios, being that 9 Images 10m was the one that presented 

the lowest mean. There is also a greater variation in the 

maximum values of soil moisture in relation to the minimum 

values. Changes in the variance in the scenarios indicate that 

the dispersion of the results also presented differences.  
Table 2.  Descriptive statistics of normalized soil moisture (W) 

of each scenario. 

          Image Min Max Average 
Std. 

Deviation 
Variance 

NDVI 0.132 0.945 0.699 0.303 0.091 
STR 0.795 7.254 4.151 2.043 4.174 

W (9 Images 120m) 0.123 1.053 0.609 0.201 0.040 

W (9 Images 60m) 0.120 0.916 0.533 0.174 0.030 
W (9 images10m) 0.147 0.720 0.426 0.152 0.023 

W (4 Images 120m) 0.136 1.165 0.666 0.232 0.053 

W (9 Images without     
Mask 120m) 

0.164 1.052 0.628 0.192 0.036 

A non-parametric Wilcoxon paired test was used to 

obtain statistical evidence that there were significant 

differences between the maps obtained from each scenario 

(Table 3). The null hypothesis of the test is that there is no 

evidence that the samples show any significant difference. 

The test was performed by comparing the reference scenario 

(9 Images 120m) with the others. 
Table 3. Wilcoxon test for normalized soil moisture (W) of the 

proposed scenarios, considering a confidence level of 95%. 

Wilcoxon 

test 

9 Images 
60m 

9 Images 
10m 

4 Images 
120m 

9 Images 
without Mask 

120m 

P-value P-value P-value P-value 

9 Images 

120m 
8.963e-05* 4.738e-13* 0.003868* 0.2493 

The Wilcoxon test shows that only the scenario 9 

Images without Mask 120m did not show significant 

differences with the reference scenario. Tests from all other 

scenarios pointed sufficient evidence to reject the hypothesis 

that there were no significant differences in relation to the 

baseline scenario. 

 

4. DISCUSSION 

 

The observed changes in the distribution of the pixels in the 

dispersion graphs have an effect on the parameterization of 

the model, and consequently, alter the final soil moisture (W) 

results. Because it is a visual method of parametrization, the 

perception of the trapezoid can be subjective, and ends up 

introducing errors in the final result. On the other hand, the 

parameterization by visual interpretation is not strongly 

affected by extreme data, which could have a significant 

effect in the case of automatic methodologies for the 

determination of the parameterization coefficients. 

Observing the scatter plots of each scenario (Figure 3), 

it is clear the difference between the scenario 9 Images 10m 

in relation to the others, presenting a spot of concentrated 

pixels with STR values from 4 to 14, and of NDVI between 

0.2 and 0.8, making it difficult to identify the upper limit of 

the trapezoid. The large volume of data contained in the 10 

meter pixel scenario presented greater parameterization 

difficulties, which was remedied by the resampling of the 

pixels to coarser resolutions (60 and 120 meters), however, it 

must be verified that a number of important information may 

have been lost in this transformation. 

Through the use of masks of interest zones, pixels were 

located in several regions in the scatter plots (Figure 5). It is 

possible to observe the pixels present in the region marked by 

the red ellipse represent edges of cloud shadows, which 

appear white in the STR images (Figure 5A, B and C). With 

the resampling, the larger the pixel size, the lower the 

concentration of points in that region of the scatter plot. 

Therefore, cloud shadows have a significant effect on the 

difficulty of visualizing the trapezoid, even in a small 

number, since only images with less than 10% cloud cover 

were chosen, being of great importance the removal of their 

shadows or the use of images totally free of clouds.  

However, the resampling of the images also affected 

pixels present inside agricultural areas, represented by the 

pink ellipsoid, this fact may show that important data may 

have been lost for the parameterization of the model in the 

resampling process (Figure 5E). 
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Figure 5. Location of pixels of different objects in the scatter 

plots created from 9 images with different resolutions. The 

boxes A, B, C, D and E indicates the pixels that are inside the 

blue, green, red, orange and purple ellipsoids, respectively. 

There was also pixels present in borders of plots and 

roads. These pixels were concentrated in the region of the 

orange ellipse, which was smoothed in the resampling 

process (Figure 5D). 

In the scatter plot of the scenario 9 Images without Mask 

and 120m, there is a large concentration of pixels in the 

region of STR values greater than 8 and of NDVI greater than 

0.8 (Figure 6). 

 
Figure 6. Location of pixels of different objects in the scatter 

plots created from different numbers of images and with 

removal of nonagricultural areas. In box A, the red area 

indicates the nonagricultural areas, the box B shows the NDVI 

of the scene extent, in box C the green points are the ones 

shown inside de green ellipsoid in the scatter plot. 

The pixels concentrated in the region within the green 

ellipse are found near the drainage network present in the 

scene, which are covered by native vegetation (Figure 6C). 

This number of points did not influence the visual 

interpretation of the trapezoids, having equal results to that of 

the reference scenario (Table 3). 

In the scenario of 4 Images and 120m, despite the 

similarities to the reference scenario, there was a fall in the 

area of the trapezoid, mainly in its upper limit, which may 

have caused differences in obtaining the coefficients, and 

consequently in the result of soil moisture. 

Through the statistics, it is possible to observe that 

changes in the conditions of the parameterization of the 

model cause significant differences in results, especially in 

the case of pixel resampling. These differences may represent 

a variation of up to 40% in the soil moisture estimates (Table 

2), especially in high humidity conditions. 

 

5. CONCLUSIONS 

 

The resampling of the pixels was the factor that caused the 

most differences in the soil moisture results, being related to 

large visual changes in the dispersion graphs. 

There were no statistically significant differences 

between the scenarios of 9 Images without Mask and 120m 

with the reference scenario. 

It is necessary the conduction of validation studies with 

the purpose of clarifying which are the most favorable 

scenarios for the parameterization of OPTRAM. 
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