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ABSTRACT

The purpose of this work is to evaluate two methods of
atmospheric correction (AC) applied to multispectral images
from the Operational Land Imager (OLI) in order to retrieve
the orange contra-band (590–635 nm). It is useful to obtain
spectral information related to the presence of phycocyanin
(PC) in inland waters. This pigment concentration indicates
the presence of cyanobacteria in the water and can
be detected by remote sensors with bands covering the
absorption peak of the PC (620 nm). The AC algorithms
tested the Acolite and 6S processors and were applied
to multispectral data from the OLI multispectral sensor,
onboard Landsat 8. The orange contra-bands calculated with
the images corrected by those two methods were compared
with the one estimated with reflectance data obtained in-situ
for validation. It showed that, for this dataset, Acolite has
performed better (MAE = 1.38; BIAS = 0.87).

Key words – Acolite, 6S, contra-band, atmospheric
correction, Operational Land Imager.

1. INTRODUCTION

The Landsat series of satellites are very important for multiple
areas, such as observation of biomes, land use and land cover
studies, and many others. It has global coverage and a 50-
year-long time series. The imaging sensor Operational Land
Imager (OLI), which is onboard Landsat 8, features 30 m
spatial resolution for the visible light range, near infra-red
(NIR) and short-wave infrared (SWIR). These characteristics
are welcome in inland water quality monitoring, where many
water bodies are too small to be seen in images acquired with
coarser spatial resolution.

However, the broad multispectral (MS) bands may limit
application of these data for some studies, such as, for
instance, monitoring phycocyanin (PC) in inland water
bodies. This is because the absorption peak of some optically
active pigments is not covered by the range of MS bands.
OLI sensor features 11 bands, of which 5 covers the visible
light range: Coastal-Blue, 435–451 nm; Blue, 452–512 nm;
Green, 533–590 nm; Red, 636–673 nm; and Panchromatic
(Pan, 503–676 nm). The PC absorption peak (620 nm) is only
covered by Pan, which is a very broad band. Therefore, this
band set makes the retrieval of spectral information directly
related to PC difficult.

This pigment indicates the presence of cyanobacteria in
inland waters, which can produce toxic compounds and
contaminate drinking water. Hence, the development of

methods for observing cyanobacterial blooms is a major
concern in water quality studies.

In order to take advantage of the qualities that belong to
the OLI sensor for monitoring PC in eutrophic inland waters,
while circumventing its limitations, a method was developed
for retrieving the orange contra-band from this sensor data
[1]. It consists in offsetting the signal from the Pan band
against the green and red MS bands, leaving only the range
covering the PC absorption peak.

To accomplish this goal, it is necessary to correct the
atmospheric effects in data from the OLI L1 bundle. It
means to convert the top-of-atmosphere reflectance (TOA)
values to ground reflectance. Atmospheric correction
(AC) methods aim to separate the signal coming from the
atmosphere scattering from the signal coming from the
ground reflectance. On this subject, this article will compare
the performances of two AC algorithms.

The first is described in [1], and is available through the
Acolite software. The second is Second Simulation of the
Satellite Signal in the Solar Spectrum (6S), a radiative transfer
model (RTM) designed to simulate the solar radiation path
through the atmosphere [2].

After this correction, it is possible to extract two orange
contra-bands and then match-up them with the reflectance
dataset acquired in-situ.

2. MATERIAL E METHODS

2.1. Data

The in situ data were made available by the Laboratory of
Instrumentation of Aquatic Systems (LABISA). The field
campaigns were conducted on four dates when Landsat 8 was
passing over the study area: Ibitinga reservoir, São Paulo state
(Path 221, Row 075), making the match-up possible. The
dates are 02/06/14, 03/26/14, 06/16/14 and 08/12/18. On each
one of these days, 4 samples were collected, summing a total
of 16 samples. As mentioned, Landsat OLI sensor dataa were
acquired from the United States Geological Survey (USGS)
Earth Explorer website.

2.2. Study area

Ibitinga reservoir, shown in Fig.1, is located in the city with
the same name, in the central area of São Paulo state, Brazil.
It is an impoundment of Tietê river, one of the most important
in the state, built for the construction of a hydroelectric power
plant between 1960 and 1970 decades. It lies at an altitude of
404 meters (SRTM) and its area covers about 93.6 km². The
use of the lands surrounding the lake are mainly characterized
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Figure 1: Ibitinga Location Map.

by agriculture and pasture. An eventual dumping of fertilizers
in the lake could lead to high concentration of PC in inland
water bodies.

2.3. Orange Band retrieval - Castagna’s method

The method of retrieving the orange contra-band is based on
the divisibility of the area formed by the normalized spectral
response function (SRF) of the Panchromatic band to extract
the spectral information between 590 and 635 nm, which is
the wavelength range of interest. According to [1], the area
within the SRF, f(λ) of a band x can be divided in an sum
of the integrals of i spectral sub-regions that constitute this
band:

Lx =

∫
λ∈Wx

L(λ)fx(λ)dλ =

n∑
i=1

∫
λ∈Wxi

L(λ)fx(λ)d(λ) = 1

(1a)∫
λ∈Wx

f(λ)fx(λ)d(λ), (1b)

where Wx is the wavelength range of waveband x, and
Wxi

are the wavelength subsets of each spectral sub-region.
According to [1], Equation (1a) is valid only if i sub-regions
do not overlap and their collection covers the entire extension
of wavelengths in the SRF.

Based on this idea, it is possible to divide the OLI
Panchromatic band spectrum in four sub-regions defined by
the Full Width at Half Maximum of the Green and Red MS
bands (Fig.2).

Figure 2: (A) Relative SRFs for Coastal-Blue (magenta), Blue,
Green and Red MS OLI bands, plus Pan band (black); and (B)

Spectral subregions defined in the Pan band.

We can name the regions as: Turquoise (Region 1; 503–533
nm); Green (Region 2; 534–589 nm); Orange (Region 3;
590–635 nm); and Red (Region 4; 636–673 nm). Considering
that the bands Green and Red are the limits of the Regions,
their radiances are similar in scale to those of Regions 2 and
4. These are the sub-regions formed between the wavelength
ranges of the bands Green and Red themselves. As a
consequence, when subtracting the radiance of the Green
band (Lgreen) and the Red band (Lred) from the Pan band
(Lpan), considering the respective scale coefficients (S), the
result is the radiance from the two other regions (Lcomposite),
namely Regions 1 and 3. The Eq. (2a) shows this concept.

Lcomposite =
(Lpan − SgreenL

green − SredL
red)

Scomposite
(2a)

Sx =

∫
λ∈Wx

fpan(λ)dλ (2b)

Nevertheless, Orange is the only of the four sub-regions
which includes the PC absorption peak, in the wavelength
620 nm. In this way, it is necessary to isolate the
spectral information in this Region. The mathematical
relation expressed in Equation 2 makes it possible, but is
imperative to replace the scale coefficients (S) by empirically
calculated ones in order to calculate the Lorange instead of
the Lcomposite. These empirical S must be calculated by
multilinear regression with remote sensing reflectance Rrs

values obtained from the available bands. This procedure is
indicated in Equation (3):

Rorange
rs = βpanR

pan
rs + βgreenR

green
rs + βredR

red
rs (3)

Where β corresponds to the empirical coefficients
containing the scale information for the MS bands and
Regions. The Rrs values are a measure of the water-
leaving radiance in each band normalized by the at-surface
downwelling solar irradiance and present steradian (sr−1) as
their units.

The coefficients used in this work are shown in Equation
(4). Those were calculated in [3] for a dataset of radiometric
samples from optically distinct water bodies distributed
throughout the Brazilian territory and based on the method
presented in [1].

Rorange
rs = 2.0020Rpan

rs +0.7188Rgreen
rs +0.2031Rred

rs (4)

Fig.3 presents the methodological flowchart of the
previously described process.

2.4. Atmospheric correction methods

2.4.1. Acolite

Acolite is a generic image processor developed at the Royal
Belgian Institute of Natural Sciences (RBINS) for application
in water studies with different sensors. In this work, Landsat
8/OLI images were employed to perform the atmospheric
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Figure 3: Methodological flowchart.

correction using the default method — the dark spectrum
fitting (DSF).

According to [4], simpler methods use the signal of SWIR
to find the correction parameters. Given that the water-leaving
reflectance in the short-wave infrared wavelengths is zero,
these algorithms assume that the signal in SWIR bands is
produced solely by aerosol and Rayleigh scattering. Then,
after a Rayleigh correction, the signal can be extrapolated to
the visible and NIR bands by an exponential function (EXP
method). However, the adjacency effects and sun glint will
be mistakenly considered as aerosols, causing the parameters
to be incorrect. Therefore, unlike this method, the DSF
algorithm selects the best-fitting combination of wavebands
and aerosol model to retrieve the parameters required for the
atmospheric correction.

This approach, described in [4], consists of the construction
of a dark spectrum (Pdark) from the object with the lowest
top-of-atmosphere (TOA) reflectance observed in each band.
Also, an spectrum of the atmospheric path reflectance (Ppath)
is computed for the scene-specific sun and viewing geometry,
as well as the Continental and Maritime aerosol models and
the aerosol optical thickness at 550 nm. Then, the Root
Mean Squared Difference (RMSD) between Pdark and Ppath

is computed for each band pair containing the fitted band.
The combination of aerosol model and band with the lowest
RMSD is selected as the best fitting for the atmospheric
correction.

2.4.2. 6S

The Second Simulation of the Satellite Signal in the Solar
Spectrum (6S) is a Radiative Transfer Model (RTM) which
has established itself as one of the standard RTMs used for
both remote sensing research and the creation of operational
products [5]. 6S can simulate the atmospheric radiative
transfer of polarized and non-polarized visible and infra-
red radiation under different atmospheric conditions. The
parameters include the atmospheric conditions, the sensor’s
and target’s altitude, wavelength, and ground reflectance.
In addition, an atmospheric correction mode allows the
calculation of a ground reflectance, given an at-sensor
radiance or reflectance value and a set of atmospheric
parameters [2]. In this work, it was used Py6S, which is a
Python interface for 6S.

The primary simulation outputs are at-sensor reflectance
and radiance, subdivided into their individual components,
as well as a number of other calculated atmospheric
parameters, such as CO transmittance, scattering angle, water
transmittance, atmospheric intrinsic reflectance, Rayleigh
transmittance and scattering, CH4 transmittance, optical
depth, spherical albedo, pixel reflectance and others.

The atmospheric inputs to do the processing were acquired
in Google Earth Engine (GEE). Aerosol optical thickness at
550nm (AOT) and water vapor column data were extracted
from MODIS sensor, calculated in g/cm², and Ozone (cm-
atm) data that was obtained from Aura sensor.

The altitude of the target was acquired from Shuttle Radar
Topography Mission (SRTM), with 30 m spatial resolution.
The lighting and sensor geometry (Solar Azimuth Angle,
Solar Zenith Angle, View Azimuth Angle, View Zenith
Angle) are described by the Landsat 8 Solar Azimuth Angle
(SAA), Solar Zenith Angle (SZA), Sensor Azimuth Angle
(VAA), and Sensor Zenith Angle (VZA) bands, respectively.
These are the geometry input parameters for 6S processing.

For radiance inputs, it was calculated the spectrum with
the smaller value of the difference between the median of
all the spectra at each wavelength and the remaining spectra
measurements. Eq. (5) was used to represent each station in
order to calculate the spectrum with the smallest value for
the difference between the median of all the spectra at each
wavelenght and the remaining spectra measurements.

Dif(Rrs,i) =
∑900

λ=400
|Rrsi,λ − (RrsMedian,λ)| (5)

DifRrs,i is the sum of the difference between median
Rrs and each in situ-derived Rrs at each wavelength for the
i sample. Difi,λ is the Rrs at sample i and wavelength
λ, andRrsMedian,λ is the median Rrs for each station and
wavelength (i.e., the median for all spectra measured at each
station). The spectrum having the smallest DifRrs,i was then
selected [1].

3. RESULTS AND DISCUSSION

Performance assessment of ocean color satellite data has
generally relied on statistical metrics chosen for their
common use and the rationale for selecting certain metrics
is infrequently explained. Commonly reported statistics
based on mean squared errors, such as the coefficient of
determination (r2), root mean square error, and regression
slopes, are most appropriate for Gaussian distributions
without outliers and, therefore, are often not ideal for ocean
color and inland water algorithm performance assessment,
which is often limited by sample availability. In contrast,
metrics based on simple deviations, such as bias and mean
absolute error (MAE), as well as pair-wise comparisons,
often provide more robust and straightforward quantities
for evaluating ocean color algorithms with non-Gaussian
distributions and outliers [6].

Bias quantifies the average difference between this
estimator and expected value, and estimates systematic error.
Often based on mean, median error can also be used if a more
robust metric is needed. MAE is a measurement of accuracy,
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which means it does not amplify outliers and accurately
reflects error magnitude. Compared to mean, median absolute
estimates are less sensitive to outliers. Similar metrics include
mean/median absolute percentage error. [7].

BIAS = 10
∑

i=1 |(log10(Mt)− log10(Ot)/n| (6)

MAE = 10
∑

i=1 |(log10(Mi)− log10(Oi)/n|, (7)

where M represents the modeled value, O is the
observation, and n represents sample size, respectively.

The 6S estimator was wrong by an average of 82%, while
the Acolite was wrong by 38%. The bias values indicate a
systematic deviation of underestimation in both cases of 42%
and 13% for 6S and Acolite, respectively. In these work, the
r2 and slope were not calculated because the number of the
in-situ samples is very low (n = 16). Fig.4 shows a scatter
plot comparing the Rorange

rs computed by both processors to
those acquired in-situ for each of the samples. In this diagram,
the blue line highlights where points should be if in-situ data
were equal to those computed from remote sensing data.

Figure 4: Scatter plot relating Rorange
rs calculated by Acolite

and 6S.
Fig.5 shows an example of the orange band for the Ibitinga

reservoir. Darker tones of orange express higher values of
Rorange

rs , which could indicate less concentration of PC in
this area. Therefore, higher values in orange band might be
influenced by Colored Dissolved Organic Matter (CDOM)
presence. This optically active component is commonly
found in eutrophic inland water bodies, and has stronger light
absorption in the blue region, thus influencing the signal in
Pan band.

4. CONCLUSIONS

• Validation metrics were calculated so as to compare the
orange contra-band estimated with in-situ acquired data
with those retrieved with satellite images from OLI L1
bundle processed with Acolite and 6S.

• The results indicated that Acolite performed better,
achieving a MAE of 38% and a BIAS of 13%. The data
processed with 6S attained a MAE of 82% and a BIAS
of 42%.

• Although 6S is a robust atmospheric processor, it is
very sensitive to input parameters. Because the MODIS
sensor data do not have parameters such as AOT and
water vapor for the study area on two dates (7/16/2014
and 8/12/2018), it was necessary to get data from one

Figure 5: Orange Band used to assess the level of PC in the
Ibitinga Reservoir sumperimposed on a Landsat 8-OLI true

color composite image. Darker tones of orange could indicate
less concentration of PC.

previous day. This may have contributed to the poorer
performance of 6S in this study.

• For a better analysis, it would be interesting to
have more in-situ field samples. Also, it would be
recommendable to perform the sun glint and adjacency
effects correction in the data before processing the
atmospheric corrections, since this might result in more
accurate outputs.

• In order to determine if lower values in orange band
are caused by PC absorption, it would require in-situ
collected data particularly focused on PC and CDOM
concentrations in these waters.
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