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ABSTRACT 

 
Forest degradation is a major issue and a key component of 
tropical forests and carbon emissions. In this study, we use 
repeated Airborne Laser Scanning (ALS) data to quantify 
carbon losses in degraded forests due to logging at the Mato 
Grosso state rainforests. We identified logged areas using 
Planet Norway's International Climate and Forests Initiative 
(NICFI) satellite imagery and estimated aboveground carbon 
density (ACD) and changes (ΔACD) using canopy structure 
derived from ALS data acquired before and after the logging. 
Logging caused carbon losses between 16-35% of the 
original ACD, but also as high as 89% in heavily disturbed 
areas. Our findings bring estimates to limited sites, so we 
recommend caution on using them for estimates of carbon 
loss elsewhere. Spatialized and continuous estimates should 
be explored in future studies connecting ALS estimates with 
other optical and SAR remote sensing datasets. 
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1. INTRODUCTION 

 
Forest degradation is a major threat to tropical ecosystems, 
even surpassing deforestation in affected areas [1]. Moreover, 
it consists of a key factor in accurately estimating carbon 
emissions in tropical regions. To reach these estimates, two 
main components are required: (1) accurate maps of forest 
degradation dynamics and type of disturbance that caused the 
degradation; and (2) estimates of the associated carbon losses 
according to disturbance type. In the Brazilian Amazon, the 
main drivers of forest degradation are logging and fire.  There 
are satellite-based forest disturbance and burned area data 
products that can help tackle degradation mapping, such as 
the Global Forest Change [2], Tropical Moist Forests [3], 
MCD64 [4], MapBiomas Fire [5]. However, the carbon 
estimates have only a handful of studies [6, 7], mainly due to 
the lack of high-resolution data to solve the problem. 

The main goal of this study was to examine carbon 
losses due to logging at dense rainforests of the Brazilian state 
of Mato Grosso using repeated ALS data. 

 

2. MATERIAL AND METHODS 
 
We studied three sites of dense rainforest in the Brazilian 
state of Mato Grosso (Figure 1). Repeated small-footprint 
ALS data (point density 4 pts/m2) were acquired using a 
Trimble HARRIER 68i laser scanning system onboard an 
airplane before and after logging (Table 1), by the Estimativa 
de Biomassa na Amazônia (EBA) project from the National 
Institute for Space Research (INPE). The point cloud data 
were used to calculate canopy height models (CHM), 
considering the maximum observed height on 1-m grid cells 
using LAStools software [8] and procedures described in [9]. 
 

 
Figure 1. Study areas in Mato Grosso state. The background is 
a true-color composite from Google Satellite in QGIS software. 
 
 Area 1 Area 2 Area 3 
ALS Pre-
logging 

T-0103 
21 May 2016 

T-0301 
29 Mar 2016 

T-0303 
30 Mar 2016 

ALS Post-
logging  

T-0738 
05 Nov 2017 

T-0820 
08 Nov 2017 

T-0822 
05 Nov 2017 

Logging 
date 

Jun-Nov 
2017 

Jun-Nov 
2016 

Jun-Nov 
2016 

Area (ha) 106.50 103.25 57.75 
Table 1. ALS data acquisition and logging dates. 
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Figure 2. Airborne LiDAR flight lines overlaid on top of true-
color composites from post-logging Planet NICFI imagery for 

the three studied areas (A-C). Panel A Planet NICFI 
background is from Jun-2017, B and C are from Jun-2016. 

 

The date of logging and the areas involved were 
characterized from visual interpretation of high-resolution 
(4.77-m) Planet NICFI data [10] (Table 1). The spatial 
patterns related to logging activities namely logging trails, 
logging decks, and felling gaps (Figure 2) were digitalized 
within the ALS coverage. The remaining analysis considered 
only the areas identified as degraded by logging. We do not 
expect the time since disturbance to affect much the results, 
because post-logging ALS data were acquired at most 1-year 
after the activities. The legality of each logging activity was 
checked using the SIMEX dataset [11], indicating that Area 
1 and 2 were legal, and Area 3 was illegal logging. 

The CHM was aggregated from 1-m to 50-m resolution 
(CHM50) by taking the average height values. To avoid edge 
effects, we removed the borders of the flight line for the 50-
m cells which were not fully covered by original 1-m cells. 
The equation from Longo et al. [6] (Eq. 1) was used to 
convert aboveground carbon density (ACD) from the CHM. 
This equation was developed using ALS data calibrated on 
inventory plots with an average size of 50 m distributed 
within undisturbed and degraded areas in the Amazon forests. 
The parameters in between parentheses were used to calculate 
the ACD uncertainty [6]. ACD was calculated in kg C/m2 and 
then converted to Mg C/ha. 
 
ACD = 0.054 (±0.17) CHM501.76(±1.04) (1) 

 
To estimate the ACD change (ΔACD), we calculated 

the difference between post-logging and pre-logging ACD. 
The uncertainty of ΔACD was calculated by the root sum of 
squares of the ACD from the two dates. We also calculated 
the relative ΔACD by the ratio of ΔACD and the ACD pre-
logging, indicating the percentage of change in carbon caused 
by logging in relation to the ACD of the pre-disturbed forest. 

 
3. RESULTS 

 
The 1-m CHMs show the damage caused by the logging 
activities from the first to the second date, with tree felling, 
opening of logging decks and trails (Figure 3). Those were 
the same visual patterns observed in the Planet NICFI 
imagery (Figure 2). The tree height decreased by an average 
of 2 to 5 meters amongst the three sites (Table 2), that is, from 
10 to 20% of the original average heights. Meanwhile, the 
ΔACD showed values ranging from -16.6 to -41.7 Mg C/ha 
(Table 2), that is, a relative ΔACD ranging from -16 
to -33.6%. The ΔACD greatly varied in between sites, 
indicated by the high SD values. The uncertainty of ΔACD 
was higher than the mean ΔACD estimates. The ΔACD map 
at 50-m spatial resolution shows the diffuse patterns of 
logging over the forest canopy, where some areas were more 
heavily affected by the logging than others, reaching up 
to -89% of ΔACD.  
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Figure 3. Forest canopy height model (CHM, 1x1m) pre-logging (first row), CHM post-logging (second row) and relative 

aboveground carbon density change (ΔACD, 50-m grid, third and fourth rows). 
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Metrics Area 1 Area 2 Area 3 
CHMpre (m) 20.3 ± 6.3 22.5 ± 6.6 17.1 ± 5.9 
CHMpost (m) 18.3 ± 7.4 17.7 ± 8.9 14.9 ± 6.6 
ACDpre 

(Mg C/ha) 104.2 ± 18.7 124.1 ± 22.8 77.2 ± 13.6 

ACDpost 

(Mg C/ha) 87.6 ± 15.7 82.4 ± 14.8 60.1 ± 10.6 

Estimated 
ΔACD 
(Mg C/ha) 

-16.6 ± 18.0 -41.7 ± 26.7 -17.1 ± 14.8 

ΔACD (%) -16.0 -33.6 -22.2 
Uncertainty 
ΔACD 
(Mg C/ha) 

24.4 55.56 43.45 

Table 2. Landscape-average metrics of canopy height model 
(CHM) and aboveground carbon density (ACD) estimated by 

repeated airborne ALS (mean ± SD across the landscape). 
 

4. DISCUSSION 
 
Our findings indicate that logging caused significant carbon 
losses to the analyzed forests causing losses between 16 and 
33.6% of the original ACD at the landscape-scale. These 
estimates are comparable to those from [6], which found 
logging causing up to 49% carbon losses in several sites in 
the Brazilian Amazon using a similar methodology. 

In our approach, we calculated landscape-scale carbon 
losses considering the entire boundary of degraded area, and 
not strictly the pixels of trails, decks, and treefalls. Therefore, 
it provides average values without the explicit need of an 
index to estimate the intensity of degradation. We note, 
however, that this can underestimate the damage over local 
heavily degraded areas, and overestimate lightly degraded or 
undisturbed forests. The development of indices degradation 
intensity could help improve these estimates. 

The uncertainty of carbon change estimates was higher 
than the carbon change estimates. This occurs due to the 
accumulation and propagation of uncertainty from the 
individual ACD estimates. Therefore, when we aggregated 
undisturbed or lightly disturbed forests in our ΔACD 
estimates, we also added error from these sources. As an 
experiment, we tested calculating the ΔACD uncertainty 
considering only pixels that experienced ACD loss greater 
than 5 Mg/ha to exclude areas that were likely not affected by 
logging, but merely shown natural mortality. This caused the 
uncertainty to significantly drop to levels closer to the 
average estimates. Nevertheless, there is still work to be done 
to properly account for the uncertainty on calculating high-
resolution carbon change estimates. 

Although looking at a very limited sampling of logged 
forests, the legality of logging activities (indicated by the 
SIMEX dataset) did not seem to affect the intensity of carbon 
loss. The only illegal logging was Area 3, which presented a 
higher carbon loss than Area 1, but inferior loss than Area 2.  

In future studies, to reach more accurate estimates of 
forest carbon loss, a few components must be improved: (i) 

maps of degradation considering disturbance attribution. This 
can potentially be solved using convolutional neural 
networks models for image segmentation to capture the 
spatial patterns of the disturbance features; (ii) acquisition of 
additional ALS data to calibrate models of carbon change in 
high resolution (such as done in this study); and (iii) the 
development of degradation intensity metrics from 
continuous optical and SAR remote sensing datasets, 
connecting with ALS datasets for calibration and validation. 

 
5. CONCLUSIONS 

 
Our study showed that logging caused losses ranging from 16 
to 33.6% of the original aboveground carbon density at the 
studied rainforests over the Mato Grosso state region. These 
carbon emission estimates are essential to accurately monitor 
the effect of REDD+ initiatives and estimate carbon 
emissions at the landscape scale. 
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