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ABSTRACT 

 

Time series of remote sensing data has become an essential 

input for land use and land cover (LULC) studies. The 

current availability of multi-temporal data sets, from 

different sources and types, demands new classification 

approaches to explore their full capacity. In this study, we 

propose a non-parametric version of the Compound 

Maximum a posteriori classifier, based on an ensemble of 

Decision Tree Classifiers. This classifier was designed to 

avoid the classification of inconsistent class sequences in 

time. It was tested in a study area located in Itaituba, Pará 

state, Brazil, by the classifications of five Landsat images. 

In our case study, more than 25% of time series would be 

classified as invalid transitions. The use of the proposed 

approach substitutes these results with the most probable 

consistent class trajectory. Improvements in individual 

accuracies, when compared to post-classification 

comparison, have also been observed. 

 

Keywords — multi-temporal classification, Landsat, 

land cover trajectory. 

 

1. INTRODUCTION 

 

Remote sensing (RS) time series is a primary input data for 

the sequential classification of land use and land cover 

(LULC) in time [1]. To date, the most common method to 

classify an image time series into a LULC map time series is 

the so-called post-classification comparison (PCC). PCC 

consists in independently classifying each image from each 

date, and then stacking and comparing the results. However, 

this method is prone to the mapping of inconsistent 

transitions/trajectories, i.e sequences of classes in two or 

more positions in time that could never happen in the real 

world [2]. 

A recent study [2] proposed a generative method [3] to 

classify a sequence of observations (e.g., a pixel time 

series), simultaneously, into a time sequence of classes (e.g., 

a LULC trajectory). This method, called Compound 

Maximum a posteriori (CMAP), generates only consistent 

class sequences. In its first version, CMAP was proposed 

considering the Gaussian distribution modeling. 

The current availability of a vast array of multiple data 

sources, including categorical and other non-spectral data 

sets, implies the need for new ways to model the data. To 

this end, the present study proposes a non-parametric 

version of CMAP, based on an ensemble of Decision Tree 

Classifiers (DTCs). Here, we propose a method to use the 

leaves of DTCs to assign conditional probabilities to the 

classes involved in the CMAP classification process, as 

described in Section 2. The advantages of this method are 

illustrated in the study case presented in Sections 3 and 4. 

Section 5 brings the conclusions of this study and future 

perspectives. 

 

2. THEORETICAL CONSIDERATIONS 

 

The initial basis of the presented classification approach is 

the same as presented in Reis et al. [2]. Consider 𝑠𝑚 =
{𝜔𝑘1

1 , … , 𝜔𝑘𝑡

𝑡 , … , 𝜔𝑘𝑇

𝑇 }, 𝑠𝑚 ∈ 𝑆 = {𝑠1, … , 𝑠𝑀} the 𝑚𝑡ℎ 

temporal class sequence 𝑠 in a set of 𝑀 possible class 

sequences, 𝑇 is the length of the time sequence and 𝜔𝑘𝑡

𝑡 ∈

𝛺𝑡 = {𝜔1
𝑡 , , … , 𝜔𝑘

𝑡 , … , 𝜔𝐾𝑡
𝑡  }, in which 𝜔𝑘𝑡

𝑡  is the actual class 

at time position 𝑡 of 𝑠𝑚. The notation 𝑘𝑡 is an indicator of 

the class 𝜔𝑘
𝑡  in the set 𝛺𝑡 that holds the 𝐾𝑡 possible classes 

on time 𝑡. This development allows for class sets of 

different sizes/natures in each time 𝑡. 

A given observation vector �⃗� = {�⃗�1, … , �⃗�𝑡 , … , �⃗�𝑇} 

contains the 𝑇 temporal observations that can indicate the 

class sequence composition. �⃗�𝑡 can represent, for example, 

the digital number vector of a specific image pixel at time 𝑡. 

No restrictions on RS data type and size are necessary at this 

point, including categorical data. 

The classification process consists of choosing the 

sequence with the highest probability �̂� of 𝑆. A generative 

method for classification can be formulated as follows: 

 

�̂� = arg 𝑚𝑎𝑥
𝑠

(𝑃(�⃗�, 𝑠), 𝑠 ∈ 𝑆)  (1) 

 

or using the definition of conditional probability: 

 

�̂� = arg 𝑚𝑎𝑥
𝑠

(𝑃(�⃗� 𝑠⁄ ) × 𝑃(𝑠), 𝑠 ∈ 𝑆)  (2) 

 

in which 𝑃(𝑠) is the a priori probability of a sequence 𝑠. 

Supposing that the observations are time-independent and 

that each one depends only on the observed object, we have: 
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𝑃(�⃗�/𝑠) = 𝑃(�⃗�1/𝜔𝑘1

1 ) × … × 𝑃(�⃗�𝑡/𝜔𝑘𝑡

𝑡 ) × … × 𝑃(�⃗�𝑇

/𝜔𝑘𝑇

𝑇 ) 
(3) 

 

The expression (3) is called here a Compound 

Likelihood (CL). The main point of the expression (2) is 

modeling the a priori probabilities of the sequence 𝑃(𝑠). In 

this research, these probabilities will be formed by a 

concatenation of transition probabilities, so-called 

Compound a priori (CA) [2]. 

The use of the equation (3) jointly with expression (2) 

returns the estimation herein defined as the Compound 

Maximum a posteriori estimation of a class sequence, or 

CMAP: 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑠

(∏ 𝑃(�⃗�𝑡/𝜔𝑘𝑡

𝑡 )

𝑇

𝑡=1

× 𝑃(𝑠), 𝑠 ∈ 𝑆) (4) 

 

2.1. Using a Decision Tree Classifier (DTC) as the base 

classifier 

 

In Reis et al. [2], 𝑃(�⃗�𝑡/𝜔𝑘𝑡

𝑡 ) is modeled as a Gaussian 

distribution. Here, this probability will be modeled using a 

Decision Tree Classifier (DTC). We propose to use DTC as 

a feature extractor, by considering the leaves as 

observational random variables instead of �⃗�𝑡. Usually, DTC 

will result in a number of leaves greater or equal the number 

of classes at hand. For each leaf, it is possible to calculate its 

conditional probability to each class of interest. 

Be 𝑁1
𝑡 , … , 𝑁𝑘

𝑡 , … , 𝑁𝐾
𝑡  the number of reference vectors for 

class 𝑘 for a certain timestamp 𝑡, 𝑁𝑡 = ∑ 𝑁𝑘
𝑡

𝑘
 . Usually, 

either one selects 𝑁𝑡 in such way that all 𝑁𝑘
𝑡 are proportional 

to the a priori probability of each class at time 𝑡, or one 

chooses equal-sized sets for reference vectors (𝑁𝑘
𝑡 = constant). 

Using a general technique of bootstrap aggregating, or 

bagging, a subset with  𝑛𝑘
𝑡  samples for each class 𝑘 is 

generated to fit a decision tree  
 𝒟𝑡 ≔ [ℒ1

𝑡 , … ℒ𝑗
𝑡 , … , ℒ𝐽𝑡

𝑡 ] with 

𝐽𝑡 leaves. Different algorithms can be used to generate 

decision trees. Herein, we tested the C4.5 algorithm [4], but 

other approaches can also be easily implemented. 

In many cases, each leaf is associated with a class, but 

due to the simplification of the tree through pruning or the 

definition of a minimum number of samples per leaf, 

samples from different classes may be included in the same 

leaf. Furthermore, the same class can be represented on 

different leaves. Considering that 𝑛𝑘𝑗
𝑡

 samples of class 𝜔𝑘
𝑡  

fall on leaf ℒ𝑗
𝑡, the conditional probability of each class can 

be estimated by: 

𝑃(ℒ𝑗
𝑡/𝜔𝑘

𝑡 ) ≅
𝑛𝑘𝑗

𝑡

𝑛𝑘
𝑡  (5) 

 

As mentioned before, the random variable leaf ℒ𝑗
𝑡 will 

be used as feature instead of �⃗�𝑡. Hence, equation (4) can be 

expressed as follows:  

 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑠

(∏ 𝑃(ℒ𝑗
𝑡/𝜔𝑘𝑡

𝑡 )

𝑇

𝑡=1

× 𝑃(𝑠), 𝑠 ∈ 𝑆) 

 

(6) 

This approximation enables the calculation of CML 

based on the DTC. The CA, as mentioned in Reis et. al [2], 

will be ad-hoc established based on a concatenation of so-

called transition matrices. 

 

2.2 Using an ensemble of Trees as a classifier 

 

Now, suppose that 𝐷𝑡  different trees can be obtained 

through resampling the training sets, in general maintaining 

the same number of training vectors per class.  

Such set, called an Ensemble of DTCs (DTCe), is 

given by �⃗⃗⃗�𝑡 = [𝒟1
𝑡 , … , 𝒟𝑑

𝑡 , … , 𝒟𝐷𝑡
𝑡 ], in each timestamp 𝑡. 

Note that it is similar to the traditional Random Forest 

classifier. However, it considers more relaxed premises, as 

to be considered a more generalized approach. An input 

feature �⃗�𝑡 will be mapped in a random vector of 𝐷𝑡  leaves, 

ℒ⃗𝑡 = [ℒ𝑗1

𝑡,1, … , ℒ𝑗𝑑

𝑡𝑑, … , ℒ𝑗𝐷𝑡

𝑡𝐷𝑡], where 𝑗𝑑 indicates which leaf 

was selected by each tree 𝑑, hence equation (6) becomes: 

 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑠

(∏ 𝑃(ℒ⃗𝑡/𝜔𝑘𝑡

𝑡 )

𝑇

𝑡=1

× 𝑃(𝑠), 𝑠 ∈ 𝑆) (7) 

 

The leaf vector of conditional probabilities 𝑃(ℒ⃗𝑡/𝜔𝑘𝑡

𝑡 ) 

would be properly estimated by considering the joint �⃗⃗⃗�𝑡 

probabilities. This process is not easily treatable, specially 

noting that the trees of �⃗⃗⃗�𝑡 are not mutually exclusive. In this 

study, a simpler approach is taken by averaging the 

individual estimates of the leaf conditional probabilities: 

  

𝑃(ℒ⃗𝑡/𝜔𝑘
𝑡 ) = 

∑ 𝑃(ℒ𝑗𝑑

𝑡 |𝜔𝑡
𝑘)

𝐷𝑡
𝑑=1

𝐷𝑡

≅ 
∑ 𝑛𝑘𝑗𝑑

𝑡𝐷𝑡
𝑑=1

𝑛𝑘
𝑡 𝐷𝑡

 (8) 

 

where 𝑛𝑘𝑗𝑑

𝑡  is the number of reference vectors for class 𝑘 

which felt in leaf 𝑗𝑑 of tree d at time 𝑡. 

 

3. EXPERIMENTAL SETUP 

 

3.1. Study area 

 

The chosen study area comprises the municipality of Itaituba, 

Pará, Brazil (Figure 1), located on the banks of the Tapajós 

River. Originally, the region was covered by the Amazon 

rainforest. The main activities in the region include gold 

mining (mainly in the 1980 - 1990s), agriculture and logging. 

This study was based on five image data sets from the 

Operational Land Imager (OLI) sensor, onboard Landsat 8, 

from orbit/point 228/63. These images were acquired in the 

dry season to minimize cloud problems, in dates 2015-08-21 

(Figure 1), 2016-08-07, 2017-09-13, 2018-07-04, and 2019-
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06-29. We used band 1 to 6, as downloaded from  
https://earthexplorer.usgs.gov/, processing level L1 

/Collection 1. Relative calibration of the images was not 

performed. 

 

 
Figure 1. Study area: a) Landsat/OLI image from 2015-08-21, 

color composition 6(R)5(G)4(B), b) in relation to Amazon. 

 

3.2. Classes and transition matrices 

 

Five LULC classes were considered: a) Primary forest 

(forest); b) Secondary vegetation (regen); c) Pasture 

(pasture); d) Bare soil (baresoil); and e) Water (water). For 

2015 and 2018, it was necessary to consider two other 

classes: Cloud (cloud) and Cloud shadow (shadow). 

Samples were collected for each image on each date to 

characterize the spectral heterogeneity of each target. 

Table 1 presents the number of collected samples. 

 

Class 
Year 

2015 2016 2017 2018 2019 

forest 9113 9564 10487 10737 11061 

regen 2246 2329 2182 2121 1576 

pasture 1304 1699 2216 1675 1136 

baresoil 5840 4725 4259 3747 3247 

water 3448 3607 3464 3764 3610 

cloud 339 - - 796 - 

shadow 187 - - 523 - 

Table 1. Sample size. 

Transition matrices (Table 2) were defined to prevent 

certain classes being converted to others. For example, if a 

region was deforested, it could be converted immediately to 

bare soil or pasture. Only in the following year, this area 

could start to regenerate.  

 

  Ttime t+1  

  forest regen pasture baresoil water cloud shadow 

ti
m

e 
t 

forest 1 0 1 1 1 1 1 

regen 0 1 1 1 0 1 1 

pasture 0 1 1 1 0 1 1 

baresoil 0 1 1 1 1 1 1 

water 0 0 0 1 1 1 1 

cloud 1 1 1 1 1 1 1 

shadow 1 1 1 1 1 1 1 

Table 2. Transition matrix. 
 

3.3. Methodology 

 

The images were classified using the ensemble of Decision 

Tree Classifier (DTCe), in two approaches: a) each image 

was classified independently - trajectories were evaluated 

considering a PCC approach; b) the images were classified 

using CMAP-DTCe. The main difference between these 

approaches is that CMAP constrains the possible transitions 

between consecutive dates based on the transition matrix 

defined in Table 2. For both cases, the number of trees has 

been set to 50 so as not to compromise rating performance. 

To obtain each tree, 500 samples from each class were 

randomly selected (with replacement). The parameters that 

define the classifier C4.5 were the same for all trees: 

confidence factor = 0.1; Minimum Number of Objects = 5 

and Number of Folds = 3. 

Results were assessed by computing the number of 

disagreements between the LULC classification results, and 

also by the traditional Global Kappa index, calculated using 

a set of references samples not used to train the classifiers. 

Note that the disagreement between at least one pair of 

classifications of the same date, in our case, also represents 

the number of inconsistent trajectories that were avoided 

with the use of CMAP. 

 

4. RESULTS AND DISCUSSIONS 

 

Figure 2 shows the comparison between trajectory 

classification results obtained by the independent and 

CMAP-DTCe. These results include the analysis of 

disagreement between trajectory classifications (in which 0 

means the same results for all images between 2015 and 

2019, and 5 means that all LULC classifications differed), 

and the final LULC classifications for 2015 and 2019, as an 

example. 
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The main contribution of CMAP usage is the result 

robustness by avoiding inconsistent transitions. The use of 

transition matrices prevented more than 25% of inconsistent 

LULC trajectories from being generated. The spatial 

distribution of these occurrences is not homogeneous.  

 

 
 Figure 2. Comparison between Independent and CMAP DTC. 

 

Nonetheless, CMAP usage also leads to some 

improvement on accuracy values for each date and a 

decrease in classification noise. However, differences on 

general accuracy indexes, such as the calculated Kappa 

values, tend to not be too expressive because of the selection 

of reference samples: these are usually selected in very 

stable regions, where inconsistent transitions are less likely 

to happen. In general, we observed that more pronounced 

improvements in accuracy tend to happen in: 1) classes 

more likely to suffer inconsistencies; 2) data sets that these 

classes are poorly classified with the independent approach; 

3) longer trajectory classifications [5] and 4) the proximity 

of homogeneous field borders. 

 

5. CONCLUSIONS 

 

In the study, we propose a non-parametric version of 

CMAP, based on an ensemble of Decision Tree Classifiers, 

the CMAP-DTCe. To this end, we also propose a 

methodology to derive a discriminant function using DTCe, 

that can be used to classify a set of RS images. CMAP-

DTCe is an efficient methodology for producing 

inconsistencies-free classifications, with greater impact 

mainly on classes prone to suffer from invalid transitions. 

Future research will continue to improve the 

methodology in terms of less biased estimations of DTCe 

probabilities. It will also further verify the effects of 

different transition matrixes and longer time series for the 

classification of certain classes of interest, prone to be 

involved in inconsistent transitions. Also, new adaptations 

for CMAP are being programmed, by adapting other base 

classifiers, including contextual ones. In the specific case of 

DTC based classifiers, it is worth to mention the capability 

of including non-numeric features in the analysis, which 

shall be tested shortly. 
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