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ABSTRACT

Geoprocessing and remote sensing play an important role
when it comes to monitoring land use and land cover using
large volumes of data (Big data). In this context, Satellite
Time Series Image (Data Cubes) emerge as an alternative
to manage Big data mining and classification. Combining
information and describing data using time series analysis
methods, like Time-Weighted Dynamic Time Warping
(TWDTW), for pattern recognition and classification in
diverse areas, becomes possible to observe and understand
land use and land cover changes as agricultural expansion
and crop monitoring. Thus, this work aims to classify crops
dynamics in the western portion of Bahia - Brazil, using
machine learning and data cubes. Our results showed
consistency and feasibility in mapping agricultural targets
on a monthly base, with a reasonable classification accuracy
over 70% for the produced maps.

Keywords – Satellite time series, MSI, crop maps, land use,
monitoring.

1. INTRODUCTION

Monitoring agricultural crops through remote sensing is
challenging task, since many crops have similar spectral
characteristics, hindering to recognize and separating
agricultural uses [1, 2]. In this way, time series
data analysis tools emerge as an alternative that allows
distinguishing agricultural crops types by evaluating, for
example, phenological metrics extracted from temporal data
and associating them with intrinsic crops characteristics such
as leaf geometry and texture, also verifying their spatial
distribution, spectral behavior, planting and harvesting time,
among others [2–4].

Remote sensing images data cubes allow the analyst to
classify land use and land cover. This procedure can be
performed by analyzing and distinguishing agricultural crops
characteristics using first by the temporal approach (scale
daily, monthly, annual or historical time series) and, secondly,
spatial (geographical distribution) and spectral (pixel-pixel
multiband analysis) approaches [5–7].

This study purpose is to produce crops maps (land use
level) through the use of Sentinel-2A/B image data cubes and
agricultural database (field references). It brings a classifying
approach of multidimensional data cubes using supervised
machine learning algorithms to obtain maps in monthly level
of the main crops existing in the study area.

2. MATERIAL AND METHODS

2.1. Study Area

The study area corresponds to LEM+ dataset [8] in a region
of interest (ROI) represented by the interval coordinates:
46◦23′53′′W – 45◦29′39′′W and 14◦0′33′′S – 11◦45′52′′S,
in the western portion of the Bahia state, Brazil. The dataset
includes monthly land use information about 1854 fields from
October 2019 to September 2020 in the area. The majority of
the 16 land uses classes are crops, as shown in Figure 1 [9],
distributed along Luís Eduardo Magalhães (LEM) and other
Bahia state municipalities.

Figure 1: Study area location map: field's data collection (class
distribution for May/2020) [9].

2.2. Methodology

The Analysis-Ready Data (ARD) cubes and image collections
availability were verified through the Brazil Data Cube (BDC)
SpatioTemporal Asset Catalog (STAC) service. From the
BDC catalog we retrieved: Sentinel-2A/B MSI collection
ARD data cubes (identified as “S2-SEN2COR_10_16D_STK-
1") related to the 16-day stack (a function identifies the most
appropriate pixel in a 16-day interval) [5] with 10m spatial
resolution and obtained according to a bounding box (bbox)
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defined around the study area samples. Point values were
extracted from each created cube and, therefore, randomly
separated in portions of training (70%) and test (30%),
considering a homogeneous distribution in landscape.

In an attempt to improve the train samples quality and
remove possible noises, Self-Organizing Maps (SOM) [7]
were created and validated (original samples versus new
samples). Supervised classification was applied, where three
machine learning algorithms were tested, based on decision
trees and kernel trick (Random Forest - RF, Support Vector
Machines - SVM and eXtreme Gradient Boosting Machine -
XGBoost or XGB).

Within the best model estimated, Probability cubes (Pc)
were build and, then, smoothed using smoothness assumption
(bayesian smoothing, reduction of “salt-and-pepper" effect).
Pc's were classified by each cube (based on tiles) and then
a mosaic from the output images were created. A labelled
image mosaic was built as output for each monthly cube.

Finally, produced crop monitoring classified mosaics maps
(12 in total) were validated using the previously separated
test samples and statistical metrics were extracted to evaluate
their accuracy (Overall accuracy - OA, kappa - K, Acurracy
intervals related to classification confidence levels) [10]. All
processing procedures were developed in RStudio script [11].
Figure 2 shows the processing flow adopted in the present
study.

Figure 2: Methodology flowchart.

3. RESULTS

3.1. LEM+ dataset preparation and defining monthly
regular image data cubes

Due to the input formats required by sits and BDC, and
also in order to work with monthly time series, the data
set had to be adjusted before creating the cubes, involving
procedures such as: point sample extraction, attributes

table columns renaming and tables separation (total of 12),
sequentially described. Thus, monthly ARD cubes could be
generated having as input the informed tables and Sentinel-
2A/B spectral bands information (B2 - Blue, B3 - Green, B4 -
Red, B5 to B7 - Vegetation Red-Edge, B8 - Near Infrared,
B8A - Vegetation Red Edge, B11 to B12 - Short Infrared
and B12) in 10m spatial resolution (provided by BDC ARD
Data) [12].

Then, the main dataset was separated into training
and testing portions as a pre-classification (pixel-by-pixel)
sampling process and then extracted from the cubes. Figure
3 shows the dataset spatial distribution separated into
training and testing portions to be used in classification
and accuracy verification processes, using a homogeneously
random sampling in portion of 70/30%, respectively.

Figure 3: Training and test crop samples spatial distribution.

3.2. Data cubes classification: validation and accuracy
measurements

The next step was to classify land use (agricultural use, crop
level) by performing a supervised pixel-by-pixel classification
with machine learning algorithms. The models (RF, SVM
and XGB) were trained using reference samples indicated
in Figure 3 (train samples), containing information on
land use classes related to the month of analysis. The
aforementioned models were implemented following the
standard sits function parameters [7] and using an initial
randomness (seed settings) equal to 127.

Concerning choosing the best fitted classification
algorithm, an k-fold cross-validation (where k=5) was
performed and the results can be seen in Table 1. Cross-
validation uses part of the available samples to fit the
classification model and a different part to test it [13], but is
important to acknowledge that this technique should be taken
as a measure of training data model‘s performance and not as
an overall map accuracy estimation.

Results show that the model which best classified the crops
data was with XGBoost in almost all data cubes, followed by
RF and, finally, SVM (Table 1). Table 1 also shows kappa
values and confidence levels (Lower and Upper) quantified in
classification process.

Since the XGB model obtained the best accuracy (higher
OA value) compared to the other models (Table 1), expressed
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Month MM OA K AL AU

M1 XGB 0.8882 0.6819 0.8698 0.9048
M2 RF 0.8674 0.5703 0.8477 0.8854
M3 RF 0.5359 0.2806 0.5083 0.5633
M4 XGB 0.7123 0.5492 0.6867 0.7369
M5 XGB 0.8170 0.6758 0.7947 0.8379
M6 XGB 0.5952 0.4796 0.5679 0.6221
M7 XGB 0.6538 0.5018 0.6272 0.6797
M8 RF 0.6669 0.5474 0.6405 0.6926
M9 RF 0.6515 0.5948 0.6249 0.6775
M10 XGB 0.6523 0.5859 0.6256 0.6782
M11 RF 0.6847 0.5975 0.6586 0.7099
M12 XGB 0.7502 0.5300 0.7257 0.7735

OA= Overall Accuracy; K = kappa; AL= Accuracy Lower; AU = Accuracy Upper; RF= Random Forest and
XGB = Gradient Boosted Machine; M1= October/2019; M2= November/2019; M3= December/2019;

M4= January/2020; M5= February/2020; M6= March/2020; M7= April/2020; M8= May/2020;
M9= June/2020; M10= July/2020; M11= August/2020 and M12= September/2020.

Table 1: Cross-validation accuracy metrics results for Best
Monthly-Models (MM) applied machine learning supervised

classifiers. Metrics are associated with each month best results.

mainly by monthly analysis (total number of months), it was
used as the classifier in classification process. So, XGB
was applied in classification workflow, generating probability
cubes (PC).

In post-classification stage, a bayesian smoothing (BS) was
applied under the generated probability cubes, in order to use
the class probability to estimate if there were a classification
error due to a spatial autocorrelation effect existent between
a pixel and its neighbors, adjusting the probabilities for the
pixel based on our prior beliefs (assumption of correlation
between pixels in neighborhood). Also, BS reduces “salt-and-
pepper” effect in classified PC's.

Finally, values were assigned to each classes existed
in generated probability cubes. Classified images cubes
accuracy measures followed the best practices proposed by
[10], which uses an area-weighted technique in order “to
eliminate bias attributable to map classification error, where
the error-adjusted area estimated has confidence intervals to
quantify sampling variability in the mentioned area".

Therefore, cross-validation performed was only made to
access an accuracy preview because of the biases inherent in
that resampling method in training data [7, 14]. So, here we
used test samples as an independent validation data set, so
that classification can be validated and expressed by model‘s
accuracy.

To perform validation and retrieve accuracy metrics, the
sits accuracy function was applied. Table 2 shows the post-
classification model’s accuracy metrics by validation method,
where almost all months reached more than 70% in overall
accuracy (OA), except tenth and eleventh months, which
reached 68.30% and 68.45% values in OA, respectively.

3.3. Monthly based crop maps

Figure 4 shows the 12 maps produced by performing a
machine learning classification, for monitoring monthly
based time series of Sentinel-2A/B images cubes. Classified
images cubes (labeled Pc) were merged, composing a mosaic
with the four classified tiles. These maps produce a sense of
stationary type analysis at a monthly level, but serially in the

entire evaluated time interval of one agricultural year.

MM OA K AL AU

M1 0.8792 0.5660 0.8484 0.9058
M2 0.8619 0.4666 0.8298 0.8900
M3 0.8608 0.6009 0.8277 0.8896
M4 0.7458 0.4654 0.7040 0.7845
M5 0.8060 0.5170 0.7671 0.8410
M6 0.7122 0.5974 0.6662 0.7552
M7 0.7923 0.5841 0.7526 0.8282
M8 0.7763 0.6070 0.7357 0.8134
M9 0.7091 0.6435 0.6609 0.7540
M10 0.6830 0.5840 0.6354 0.7280
M11 0.6845 0.5609 0.6383 0.7281
M12 0.7670 0.4522 0.7268 0.8039

OA= Overall Accuracy; K = kappa; AL= Accuracy Lower; AU = Accuracy Upper;
M1= October/2019; M2= November/2019; M3= December/2019; M4= January/2020;

M5= February/2020; M6= March/2020; M7= April/2020; M8= May/2020;
M9= June/2020; M10= July/2020; M11= August/2020 and M12= September/2020.

Table 2: Validation accuracy metrics results for Gradient
Boosted Machine (XGB) Monthly-Model (MM) applied in

machine learning supervised classification.

4. DISCUSSION

In the agricultural use analysis, the output pixels that
composed the cubes may not be sensitive to the point of
faithfully representing the change of use class in the region,
especially on the scale of longer interval (1 agricultural year),
by accessing only the cube (requiring a careful and sensitive
point analysis at land change trajectory throughout all time
interval - 1 agricultural year - by using Web Land Trajectory
Service - WLTS, not approached here). It's due to the BDC
approach that evaluates time first and then space [4, 5].

Therefore, we used monthly time series analysis approach
to try to overcome this limitation and better explore crops
variability throughout the analyzed agricultural year. Results
show that XGB classifier well-performed the representation
of agricultural classes, with a general accuracy of more than
70%, presented in the validation (Table 1 and Table 2).

Some classes could not be mapped due to lack of samples
in sufficient quantities in the dataset (unbalance). Although
it was not addressed in the work, a balancing of the samples
was analyzed in the workflow aiming at its applicability in the
context of the research and to avoid such mentioned problems.
However, as the uncultivated soil class had most of the total
amount of dataset samples (more than 53.94% of samples
distributed throughout the ROI), undersampling this class and
oversampling the other 15 classes to reach a certain limiar
could cause problems in the classification as overfitting or
underfitting, and also, discrepant representation of the actual
data distribution in the study area, respectively.

As a consequence, some classes like brachiaria and
beans could not been represented due to the amount of
representativa samples (Figure 4-a and 4-c). This is also a
problem caused by dataset transformation (polygon to point)
to suit sits processing requirement, in which was used the
polygon‘s centroid to represent each sample (and class),
suppressing essential information.

Seeking to overcome this problem, an approach using: (i)
stratified sampling and balancing; (ii) random sampling based
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on the proportion of distribution of these points per area of
the polygons, also considering what was suggested by [15];
(iii) Latin hypercube sampling (simulation of Monte Carlo
method) ; is encouraged and suggested for future work.

Figure 4: Crop maps based on monthly time series analysis,
from October/2019 to September/2020 (a-l).

5. CONCLUSIONS

Accurate land cover and land use change (LULCc) maps
are important to subsidize public policies the implementation
related to climate change, agriculture dynamics, food
security, climate change, land and soil management and
environmental impacts prevention. These maps can help
farmers in the correct land management and monitoring the
development of each crop.

Our classifying approach of multidimensional data cubes
using supervised machine learning algorithms and reference
data proved to be a viable and consistent preliminary
approach for crop mapping allowing the monitoring of
agricultural areas in a monthly base, subsidizing several
applications.
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