Avaliação do padrão de exatidão cartográfica de imagem do sensor Wordview

Diogo Luiz Ferreira Felipe Gomes Marambaia Eduardo José da Silva Junior

4^a Divisão de Levantamento – DSG/DCT Av Marechal Bittencourt, 97 - 69029-160 - Manaus - AM, Brasil diogolufe@gmail.com, felipemarambaia1@gmail.com, eduardo.silva@eb.mil.br

Abstract. The Brazilian Army through a cooperation agreement with the *National Geospatial-Intelligence Agency* began to receive images from Worldview sensor. But to be able to use this new materials in the cartographic production it is necessary to evaluate the geometric quality of this new images and this paper aims to do so. The first step of the methodological approach is to choose the correct image, in this paper we choose the image near of Amazon Stadium because it is easier to measure the GPS points. After that a set is chosen of point extracted from the image, then go to the field and perform the measurement of the GPS points, the processing of the observed data and by last classify the product by the Cartographic Standard of Accuracy (CAS). The methodology that defines a statistical analysis of the planimetric accuracy is composed by the trend and the accuracy analysis. The trend analysis was accomplished using the Student's-t test with the objective to discover the presence of systematic error in both Cartesian directions. The accuracy analysis was performed using the chi-square statistical test, where sample variances were compared to the standard values pre-established by the Brazilian Cartographic Accuracy Standards law. After applying the methodology, it was observed that the Worldview was evaluated according to the CAS, in class B to cartographic document, for the scale of 1:5.000 and in class A, for the scale of 1:10.000.

Palavras-chave: remote sensing, ortoimages, planimetric accuracy, sensoriamento remoto, ortoimagens, acurácia planimétrica.

1. Introdução

O Exército Brasileiro firmou um acordo de parceria com a *National Geospatial-Intelligence Agency* (NGA) e passou a ter acesso às imagens do sensor *Worldview* produzidas pela empresa *Digital Globe*, esse acordo está alinhado com a ação estratégia 7.2.1 do Plano Estratégico do Exército (EME, 2014).

Para utilizar essas imagens como insumos no processo de produção cartográfica, no âmbito da Diretoria de Serviço Geográfico (DSG), faz-se necessário avaliar a qualidade da acurácia posicional (MAROTTA; VIEIRA, 2005) conforme a Especificação técnica para a Aquisição de Dados Geoespaciais Vetoriais (ET-ADGV) (DSG, 2009).

Este trabalho objetiva avaliar a acurácia planimétrica de ortoimagem proveniente do sensor *Worldview*, cuja especificação técnica consta na Tabela 1, para garantir a qualidade dos produtos gerados a partir destes insumos.

ESPECIFICAÇÃO	PARÂMETRO
Período da Cena	JAN 16
Resolução Espacial	0,5 m
Resolução Espectral	Multiespectral (400nm - 040nm)
Formato	Tiff
Datum Horizontal	WGS84
Projeção	Lat/Long
Tamanho da Cena	4,57 km x 2,45 km

Tabela 1. Especificações técnicas da ortoimagem.

A ortoimagem avaliada encontra-se no Banco de Dados Geográfico do Exército Brasileiro (BDGEx) e foi disponibilizada como insumo para trabalhos referentes aos Jogos Olímpicos Rio 2016, sem informações quanto aos parâmetros de ortorretificação.

A fim de alcançar este objetivo fez-se uma análise estatística com um conjunto de pontos medidos no campo com receptor GNSS e um conjunto de pontos fotointerpretados em gabinete.

A área de estudo foi o entorno da Arena da Amazônia, localizada na cidade de Manaus-AM, conforme Figura 1.

2. Metodologia de Trabalho

É apresentado na Tabela 2 um resumo dos aspectos metodológicos utilizados nessa pesquisa com as etapas a seguir.

Caracterização da Pesquisa	Organização da Pesquisa							
Abordagem metodológica: Quantitativa	Objeto empírico: Imagens do sensor							
	Worldview							
Tipo de Pesquisa: Pesquisa Aplicada	Quantidade de Observações: trinta e sete							
Técnica de Investigação: Estudo de caso	Unidade de Análise: cena ao redor da Arena							
	da Amazônia							

Tabela 2. Resumo dos aspectos metodológicos.

2.1 Distribuição de amostras

Utilizou-se o *software* QGIS 2.14.4, para criar uma grade de 1 km x 1 km, a fim de garantir uma densidade de pontos de controle o mais uniforme possível. Desta forma, não houve quadrícula sem pontos de controle.

2.2 Aquisição dos pontos na ortoimagem

Foram selecionados visualmente trinta e sete pontos na ortoimagem em objetos e locais que facilitam a medição em campo. Como exemplo, podemos citar fim de muro/calçada, cruzamento entre duas vias e nas proximidades de monumentos. Utilizou-se o *software Google Street View*, conforme Figura 2, para escolher pontos que não possuíssem obstruções próximas com intuito de evitar problemas de multicaminhamento.

Anais do XVIII Simpósio Brasileiro de Sensoriamento Remoto -SBSR ISBN: 978-85-17-00088-1

Figura 2. Ponto planejado usando o software Google Street View.

2.3 Criação dos arquivos shapefile dos pontos fotoidentificados e dos pontos levantados

Criaram-se dois arquivos no formato *shapefile* com geometria tipo ponto e atributo "ID" para identificação dos pontos. Um desses arquivos é referente às imagens de referência (pontos de controle) – fotoidentificados, e o outro, referente ao levantamento dos pontos em campo (pontos de verificação), conforme Figura 3.

2.4 Planejamento para levantamento em campo

Utilizou-se como base a Estação Planimétrica SAT-91162, localizada na 4^a Divisão de Levantamento, em Manaus, e verificou-se que a distância dos pontos a serem levantados em relação ao marco base não ultrapassam sete quilômetros, conforme Figura 4.

Figura 4. Comprimento da linha base máxima.

2.5 Coleta dos pontos em campo

Foram coletados trinta e sete pontos, com rastreio de vinte minutos para cada, distribuídos conforme Figura 5.

Figura 5. Distribuição de pontos de controle.

2.6 Processamento

Com a descarga e o posterior processamento, obtiveram-se os valores do erro quadrático médio (EQM) e do *Position Dilution of Precision* (PDOP) máximo.

O PDOP máximo tem que ser menor que seis, caso contrário, obter-se-á a razão sinal por ruído mínimo (Monico, 2000). O erro quadrático médio tem que ser menor que 0,5 m, de acordo com a Portaria n° 954, de 13 de novembro de 2002, do Instituto Nacional da Colonização e Reforma Agrária (INCRA).

Compararam-se as coordenadas dos pontos fotoidentificados com as dos pontos de controle obtidas pelo levantamento. Em seguida, calcularam-se as diferenças entre essas coordenadas, obtendo-se o valor das discrepâncias nas coordenadas E (abscissa) e N (ordenada). Feito isso, calcularam-se a média e o desvio padrão das discrepâncias para cada uma das coordenadas.

2.7 Análises posicionais quanto ao Padrão de Exatidão Cartográfica dos Produtos Cartográficos Digitais (PEC-PCD)

Conforme Decreto-Lei n° 89.817, de 1984, e a 2ª Edição da Especificação Técnica para a Aquisição de Dados Geoespaciais Vetoriais (ET-ADGV 2.0), 90% dos erros dos pontos coletados por método de alta precisão tem que ter erro inferior aos erros da Tabela 3.

Tabela 3.	Padrão	de exatidão	cartográfica	da p	lanimetria	dos	produtos	cartográficos	digitais
					(0 c Vr				

$(E I-ADG \vee 2.0).$											
PEC-PCD	1:2.	000	1:5.	000	1:10.000						
	PEC (m)	EP (m)	PEC (m)	EP (m)	PEC (m)	EP (m)					
A	0,56	0,34	1,40	0,85	2,80	1,70					
В	1,00	0,60	2,50	1,50	5,00	3,00					
С	1,60	1,00	4,00	2,50	8,00	5,00					
D	2,00	1,20	5,00	3,00	10,00	6,00					

2.8 Verificação quanto à precisão e tendência

Para avaliação quanto à precisão, foi utilizado o teste do Qui-Quadrado, no qual é feita a comparação entre o desvio padrão obtido (s) e o esperado (σ) (Equação 1):

$$\begin{cases} H_0: S_{\varepsilon}^2 \le \sigma_{\varepsilon}^2 \\ H_1: S_{\varepsilon}^2 > \sigma_{\varepsilon}^2 \end{cases}$$
(1)

Anais do XVIII Simpósio Brasileiro de Sensoriamento Remoto -SBSR ISBN: 978-85-17-00088-1

em que σ é o desvio padrão esperado que é calculado por (Equação 2):

$$\sigma = \frac{EP}{\sqrt{2}} \tag{2}$$

Verifica-se o intervalo de confiança (Equação 3):

$$\chi_{\varepsilon}^{2} = \chi_{(n-1;\alpha)}^{2}$$
(3)

em que $\chi_{\varepsilon}^2 = (n-1) \frac{s_{\varepsilon}^2}{\sigma_{\varepsilon}^2}$ e $\chi_{(n-1;\alpha)}^2$ é o teste Qui-Quadrado com n-1 graus de liberdade e

nível de significância α .

Para a avaliação quanto à tendência (teste t-Student) em que se verifica como hipótese nula (H_0), a diferença das médias entre grupos é zero, e como $\begin{bmatrix} H_{LS,Sd^2} \\ H_{LS,Sd^2} \end{bmatrix}$, diferente de zero. Calcula-se o valor t amostral e é verificado se o valor encontra-se no intervalo de aceitação ou rejeição da hipótese nula.

O valor t amostral é expresso por (Equação 4):

$$t_{\varepsilon} = \frac{\overline{\varepsilon}}{S_{\varepsilon}} \sqrt{n} \tag{4}$$

e o intervalo de confiança por (Equação 5):

$$|t_{\varepsilon}| < t_{(n-1;\frac{\alpha}{2})} \tag{5}$$

em que $\bar{\epsilon} = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i$ é o teste *t-Student* com n-1 graus de liberdade e nível de significância α e (Equação 6):

$$\sigma = \frac{EP}{\sqrt{2}} \qquad \qquad s_{\varepsilon}^2 = \frac{1}{(n-1)} \sum_{i=1}^n (\varepsilon_i - \overline{\varepsilon})^2 \tag{6}$$

Caso o valor t amostral estiver fora do intervalo de confiança rejeita-se a hipótese nula.

3 Resultados e Discussão

3.1 Quanto à coleta de pontos

Dos trinta e sete pontos planejados para levantamento em campo, os pontos 4, 10, 12, 14,15, 17, 24, 29 e 35 foram descartados devido a não serem coletados conforme a fotoidentificação, obtendo-se a Tabela 4.

Tabela 4. Coordenadas E e N medidas e seus respectivos RMS e PDOP.

Ponto	E_medidos	N_medidos	EQM	PDOP
1	828586,429	9659351,196	0,000	2,081
2	828182,700	9659257,144	0,001	3,318
3	829193,758	9659486,826	0,003	2,709
5	830047,313	9659064,056	0,001	2,429
6	830527,201	9659588,041	0,001	1,918
7	831395,736	9659627,745	0,001	2,294
8	831826,608	9659260,879	0,001	2,349
9	832214,722	9659330,797	0,001	2,370
11	832386,222	9658713,717	0,002	2,807
13	832451,182	9657783,321	0,001	2,318

Ponto	E_medidos	N_medidos	EQM	PDOP
16	831859,148	9657552,734	0,003	2,513
18	830872,129	9657647,307	0,001	2,194
19	830237,118	9657629,384	0,003	3,032
20	829366,099	9657838,418	0,005	3,283
21	829381,274	9657367,757	0,001	4,130
22	828260,785	9657762,495	0,002	2,480
23	828335,155	9657255,307	0,002	2,460
25	828617,492	9657782,465	0,002	2,232
26	828103,045	9658663,795	0,002	5,847
27	829008,392	9658774,134	0,002	2,104
28	829504,592	9658726,945	0,003	2,635
30	830147,001	9658159,273	0,002	2,519
31	830491,970	9659039,785	0,002	9,136
32	830796,905	9658807,909	0,001	2,677
33	831376,968	9658315,388	0,001	3,239
34	831708,386	9658898,538	0,002	5,573
36	832564,758	9659638,024	0,003	3,133
37	832578,109	9657255,859	0,002	2,459

Observa-se que a amostra de pontos de controle contém valores de RMS menores que 0,5 m. Já para os valores de PDOP, o ponto 31 teve valor acima de 6. Porém, na fase de pósprocessamento, o ponto 31 foi ajustado.

3.2 Quanto à acurácia posicional e tendências

Comparando-se os vinte e oito pontos coletados em campo com suas respectivas posições na ortoimagem, quantificaram-se os deslocamentos de cada ponto nas direções E (Δ E) e N (Δ N), conforme Tabela 5.

Ponto	E_controle	N_controle	E_medidos	N_medidos	$\Delta E(m)$	$\Delta N(m)$
1	828585,900	9659353,255	828586,429	9659351,196	0,529	-2,059
2	828183,833	9659255,668	828182,700	9659257,144	-1,133	1,476
3	829193,201	9659488,322	829193,758	9659486,826	0,557	-1,496
5	830047,677	9659064,975	830047,313	9659064,056	-0,364	-0,918
6	830527,348	9659589,505	830527,201	9659588,041	-0,147	-1,464
7	831396,125	9659630,373	831395,736	9659627,745	-0,389	-2,628
8	831826,291	9659262,698	831826,608	9659260,879	0,317	-1,819
9	832215,884	9659331,790	832214,722	9659330,797	-1,162	-0,993
11	832386,271	9658716,633	832386,222	9658713,717	-0,049	-2,916
13	832450,733	9657784,950	832451,182	9657783,321	0,449	-1,629
16	831858,365	9657554,512	831859,148	9657552,734	0,783	-1,778
18	830871,308	9657649,402	830872,129	9657647,307	0,821	-2,095
19	830238,716	9657629,982	830237,118	9657629,384	-1,598	-0,598
20	829365,739	9657840,606	829366,099	9657838,418	0,360	-2,188
21	829383,285	9657368,857	829381,274	9657367,757	-2,011	-1,100
22	828261,023	9657764,516	828260,785	9657762,495	-0,238	-2,021

Tabela 5. Deslocamentos dos pontos da ortoimagem.

Ponto	E_controle	N_controle	E_medidos	N_medidos	$\Delta E(m)$	$\Delta N(m)$
23	828335,280	9657256,805	828335,155	9657255,307	-0,125	-1,498
25	828616,548	9657784,383	828617,492	9657782,465	0,944	-1,918
26	828102,845	9658665,952	828103,045	9658663,795	0,200	-2,157
27	829008,579	9658775,524	829008,392	9658774,134	-0,187	-1,390
28	829503,482	9658728,278	829504,592	9658726,945	1,109	-1,333
30	830145,777	9658160,770	830147,001	9658159,273	1,224	-1,497
31	830491,146	9659041,443	830491,970	9659039,785	0,824	-1,658
32	830797,040	9658809,442	830796,905	9658807,909	-0,135	-1,533
33	831376,876	9658317,161	831376,968	9658315,388	0,092	-1,773
34	831707,076	9658899,668	831708,386	9658898,538	1,309	-1,130
36	832563,402	9659639,024	832564,758	9659638,024	1,356	-1,000
37	832576,606	9657256,301	832578,109	9657255,859	1,503	-0,442

Adotou-se o nível de confiança de 0,9, pois 90% dos pontos têm que estar dentro do PEC-PCD. Avaliaram-se o erro máximo e o resultado do teste do Qui-Quadrado, conforme Tabelas 6 e 7, respectivamente, para as escalas 1:2.000, 1:5.000 e 1:10.000, classificando quanto ao PEC-PCD.

Tabela 6. Porcentagem do erro máximo.

	PORCENTAGEM							
	ESCALA	SCALA CLASSE F		ΔΕ	ΔΝ	>90		
						%?		
	1:2.000	А	0,56	53,57143	3,57143	NÃO		
		В	1	67,85714	14,28571	NÃO		
(%)		С	1,6	96,42857	53,57143	NÃO		
06		D	2	96,42857	78,57143	NÃO		
Õ	1:5.000	А	1,4	89,28571	32,14286	NÃO		
		В	2,5	100,00000	92,85714	SIM		
Ϋ́X		С	4	100,00000	100,00000	SIM		
X		D	5	100,00000	100,00000	SIM		
RC	1:10.000	А	2,8	100,00000	96,42857	SIM		
ER		В	5	100,00000	100,00000	SIM		
		С	8	100,00000	100,00000	SIM		
		D	10	100,00000	100,00000	SIM		

Tabela	ı7.	Com	para	ção	do '	Teste	do	Qui	i-Q	uad	lrado	com	0	desvio	эp	padrão	obtid	lo.

	ESCALA	CLASSE	σ (EP/ √2)	χ^2_E	χ^2_N	$\leq \chi^2_{(27;0,1)}$?
ADO		А	0,24042	368,48576	303,67683	NÃO
	1.2 000	В	0,42426	118,32487	97,51400	NÃO
V	1.2.000	С	0,70711	42,59695	35,10504	NÃO
DU/		D	0,84853	29,58122	24,37850	SIM
		А	0,60104	58,95772	48,58829	NÃO
D D	1.5 000	В	1,06066	18,93198	15,60224	SIM
	1.5.000	С	1,76777	6,81551	5,61681	SIM
		D	2,12132	4,73299	3,90056	SIM
	1:10.000	A	1,20208	14,73943	12,14707	SIM

Anais do XVIII Simpósio Brasileiro de Sensoriamento Remoto -SBSR ISBN: 978-85-17-00088-1

 ESCALA	CLASSE	σ (EP/√2)	χ^2_E	χ^2_N	$\leq \chi^2_{(27;0,1)}?$
	В	2,12132	4,73299	3,90056	SIM
	С	3,53553	1,70388	1,40420	SIM
	D	4,24264	1,18325	0,97514	SIM

Confrontando-se as Tabelas 6 e 7, no tocante aos valores de Qui-Quadrado e erros máximos, tem-se a Tabela 8.

Tabala 8	Classificação	do artaimagam	augento ao	DEC DCD
	Classificação	ua ontonnagem	quanto ao	

Escala	Erro Máximo (90%)	Qui-Quadrado (erro padrão)	PEC-PCD
1:2.000	-	D	-
1:5.000	В	В	В
1:10.000	А	А	А

Analisando a tabela 8 percebe-se que a ortoimagem classifica-se como PEC A na escala 1:10.000, PEC B na escala 1:5.000 e não possui classificação PEC na escala 1:2000.

No teste de tendência *t-Student*, é verificado se a média das discrepâncias pode ser considerada estatisticamente como igual a zero, ou seja, conforme hipótese. Os valores *t* amostrais obtidos foram $\hat{t}_{\Delta N} = 1,0298$ e $\sqrt[2]{t-\chi^2_{[n-1;0]}} = -9,7399$, sendo o valor teórico obtido é $t_{(27;0,05)} = 2,052$. Assim, constata-se que existe um deslocamento na coordenada N, uma vez que o valor de $|\hat{t}_{\Delta N}|$ é maior que o teórico.

4. Conclusão

A partir da metodologia explanada nesse artigo foi possível avaliar e classificar as imagens do sensor Worldview através do PEC-PCD.

Analisando a tendência (teste *t-Student*), verificou-se que na coordenada N é significativa. O fato de não ter atendido ao teste de tendência, apenas indica que haveria uma translação na coordenada N, todavia como a mesma atendeu ao PEC-PCD (pelo teste quanto à precisão para a escala 1:10.000), sugere-se uma complementação de pontos de controle que indicaria que a acurácia melhoraria significativamente.

A ortoimagem não é recomendada para adquirir feições planimétricas na escala 1:2.000. Com uma complementação de pontos de controle devidamente ajustados, poderia-se atingir classe A para a escala 1:5.000. A maior escala a ser utilizada para produtos cartográficos digitais é a de 1:10.000, já que obedece ao PEC-PCD classe A, e conseqüentemente, obedece a classe A também para as escalas menores que 1:10.000 (1:25.000, 1:50.000, 1:100.00 etc).

Sugere-se que utilizem-se os pontos medidos para georreferenciar a ortoimagem. Assim poderia se obter melhores resultados dos testes de precisão e tendência podendo até alcançar classificações melhores de PEC-PCD.

Referências Bibliográficas

BRASIL. **Portaria nº 954, de 13 de novembro de 2002.** Diário Oficial – Nº 222 – Seção 1, segunda-feira, 18 de novembro de 2002. Disponível em http://www.incra.gov.br>, Acesso em: 15 de setembro de 2016.

DIRETORIA DE SERVIÇO GEOGRÁFICO (DSG). Especificação técnica para a Aquisição de Dados Geoespaciais Vetoriais (ET-ADGV). Brasília, 2009. 237 p.

MONICO, J. F. G. Posicionamento pelo NAVSTAR-GPS: Descrição, Fundamentos e Aplicações. 1^a ed. São Paulo: Unesp, 2000.

ESTADO MAIOR DO EXÉRCITO (EME). Plano Estratégico do Exército 2016-2019 (PEEx). Brasília, 2014.

MAROTTA, G. S.; VIEIRA, C. A. O. Aplicação do Padrão de Exatidão Cartográfica em imagens orbitais Áster para fins de atualização de mapeamentos. In: XXII Congresso Brasileiro de Cartografia, 2005.