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Abstract. There are many empirical algorithms described in the literature to estimate colored dissolved organic 

matter (CDOM) by remote sensing. When the measurements are acquired in turbid water, new algorithms might 

be required to better characterize regional optical characteristics. The aim of this study is the assessment of 

current empirical algorithms to retrieve CDOM absorption coefficient (acdom) by remote sensing in the Lower 

Amazon. This is a region where very turbid waters mix with clear water from tributary rivers. Surface water 
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samples were collected concurrent with radiometric measurements in different stations along the study area, 

throughout the annual hydrological cycle: Rising, High, Falling and Low water. Remote sensing reflectance 

(𝑹𝒓𝒔) was estimated from in situ radiometric data presenting a low coefficient of variation in the range of 400-

840 nm. Six empirical algorithms were used to estimate acdom (G11, K05, B05, M14, T11 and K15) from 𝑹𝒓𝒔 

showing high values even in the green spectrum. The K15 (R2=0.57; RMSE = 0.09; p-value<0.05) showed the 

best performance when compared to all in situ acdom measurements. However, when the dataset is partitioned into 

clear water rivers and Amazon River the results are different. For clear water the algorithms presented a better 

performance (e.g. K15 R2=0.68; RMSE = 0.14, p-value<0.05), and no significant correlation was obtained for 

the Amazon River. The results suggest that other optically active constituents are interfering in the retrieve of 

CDOM, and it is likely to be suspended sediments.  Therefore, different methodological approaches should be 

explored to correct for this interference. 

 

Keywords: CDOM, turbid water, bio-optical properties, matéria orgânica dissolvida colorida, águas túrbidas, 

propriedades bio-ópticas. 

 

1. Introduction 

Colored dissolved organic matter (CDOM) is a fraction of the dissolved organic matter 

(DOM) that absorbs ultraviolet (UV) and visible light, hence has an important role in the 

optical properties of aquatic systems. In freshwaters, CDOM is usually allochthonous and 

influenced by land surface processes (Wetzel and Likens, 2000). Many empirical CDOM 

algorithms have been developed in the last decades and these algorithms are sensitive to 

changes in the specific composition of water constituents (Zhu et al., 2014). The first 

empirical algorithm developed to retrieve CDOM used the blue-green ratio, more suitable for 

waters with low CDOM as well as low suspended particles (i.e. oceanic waters) (Tassan, 

1994). With the increase of CDOM towards continental shelf, estuarine and inland waters, 

new algorithms were developed using different band ratios (Brezonik et al., 2005; Kutser et 

al., 2005; Griffin et al., 2011; Tiwari and Shanmugam, 2011; Mannino et al., 2014; Kutser et 

al., 2015). While numerous studies have focused on the estimation of CDOM using ocean 

color remote sensing for coastal waters applications, efforts must be performed to better 

understand the link between water's apparent and inherent optical properties in inland waters 

(Palmer et al., 2015). 

The Amazon River receives waters from large and small rivers and exchanges organic 

and inorganic constituents with floodplains areas that stays under water during months, 

playing an important role in the biogeochemical processes that occurs in the entire watershed 

(Richey et al., 1990; Ward et al., 2015). The Lower Amazon is a region that gathers the water 

received from all the largest Amazon tributary rivers and despite its importance, remote 

sensing studies in this area are relatively sparse.  

In addition to allowing a synoptic monitoring, retrieving CDOM by remote sensing also 

subsidizes studies that explore the relationship of CDOM with the dissolved organic carbon 

(DOC) as emphasized by numerous recent studies (Brezonik et al., 2015; Kutser et al., 2015; 

Vantrepotte et al., 2015) as well as with pCO2 (Clark et al., 2004, Kutser et al., 2015). Such 

potential offers new possibilities for increasing our current knowledge on the role of the 

Amazon River in the global carbon cycle. In this context, the aim of the current study is to 

explore the performance of current CDOM empirical inversion algorithms for retrieving 

CDOM in the Lower Amazon River.   

 

2. Material and Methods 

The study area comprises the Lower Amazon River, a transect of 900 km between the 

upstream boundary at Óbidos (S 01°55.141′, W 55°31.543′) and the Amazon River mouth. 

The downstream boundary was the north and south channel near Macapá, which are the last 

two well-constrained channels near the Amazon River mouth (S 00°05.400′, W 51°03.200′ 

and S 00°09.415′, W 50°37.353′, respectively). In addition to the Amazon River, samples 

were also collected in the Tapajos, Xingu, Paru and Jari River as well as at in the Great Lake 
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Curuai (Figure 1a). These latter rivers are classified as clear waters and generally show high 

levels of in situ primary production when compared to the turbid Amazon River waters (Ward 

et al., 2015). The sampling was done during four different seasons: high water (T1, May 

2014), low water (T2, November 2014), falling water (T3, July 2015) and rising water (T4, 

February 2016) (Figure 1). 

 

 
Figure 1. a) In situ sampling stations at the Lower Amazon River and tributaries (Tapajos, 

Xingu and Paru River); b) Seasonal discharge of the Amazon River during the years of 2014, 

2015, 2016, and the mean value during 2010-2016. Discharge data acquired from Óbidos 

Station (ANA – Brazil’s National Waters Agency). 

 

Water samples were prior filtered through 25 mm Whatman GF/F glass fiber filters (0.7 

µm nominal pore size) to remove the suspended matter and the resultant water was refiltered 

through 0.2 µm polycarbonate membranes (Whatman Nuclepore, 25 mm) under gentle 

vacuum (< 5 mm Hg) according to the NASA protocol (Mitchell et al., 2003). Samples were 

storage in pre-combusted glass bottle wrapped with aluminum foil and kept under 

refrigeration (4°C) until laboratory analysis. CDOM samples were taken from the refrigerator 

before starting the analysis with the purpose of regulate it with the room temperature and to 

avoid any bias due to thermal difference between the samples and the reference water (Milli-

Q water). CDOM absorbance spectra were measured from 250 to 850 nm using a Shimadzu, 

UV 2450 spectrophotometer with a 10cm quartz cell.  CDOM absorption coefficient (acdom(λ)) 

are calculated from absorbance measurements using the following Equation 1: 

 

𝑎𝑐𝑑𝑜𝑚(𝜆) = 2.303. 𝐴(𝜆)/𝐿                                            (1) 

 

where A(λ) is the absorbance of the filtered water sample at the specific wavelength λ and 

L is the optical pathway of the quartz cell in meters. As recommended by Babin et al. (2003) 

for waters with higher concentration of CDOM, a baseline correction was applied to each 

spectrum by subtracting the average absorbance in the range of 680-690 nm to the whole 

spectrum.  

Concurrent to the water sampling, above water radiometry was measured with a portable 

hyperspectral radiometer FieldSpec® (ASD Inc.). The acquisition geometry followed Mobley 

(1999) recommendations. Total water leaving radiance (Lw), sky radiance (Lsky) and the 

radiance from a white panel Spectralon reference (Lg) were consecutively measured 6 to 10 

times. The later parameter was used to estimate the downwelling irradiance (Ed) (Equation 2):  

 

𝐸𝑑(𝜆) =  𝐿𝑔(𝜆)𝑓𝑐𝜋                                                     (2) 
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where 𝑓𝑐 is a correction factor estimated in laboratory by the ratio of a standard 

Spectralon reference that remains in the laboratory by the Spectralon panel used in the field.  

The remote sensing reflectance (𝑅𝑟𝑠) can be computed according to Equation 3:  

 

𝑅𝑟𝑠 =  
𝐿𝑤

𝐸𝑑
=  

𝐿𝑢− 𝜌𝑎𝑖𝑟−𝑟𝑖𝑣𝑒𝑟∗ 𝐿𝑠𝑘𝑦

𝐸𝑑 
                                              (3)          

  

where 𝐿𝑢 is the upwelling radiance that reaches the sensor and 𝜌𝑎𝑖𝑟−𝑟𝑖𝑣𝑒𝑟 is a sky glint 

correction coefficient at the air-sea interface.  

There are several methods in the literature to correct the sun glint interference. In the 

present study we used the approach of Ruddick et al. (2006), here called R06 which is 

indicated for turbid to highly turbid waters. Its 𝜌𝑎𝑖𝑟−𝑟𝑖𝑣𝑒𝑟 is a function of wind and cloud 

cover. It also proposes a correction for residual glint or white offset correction using the bands 

of 𝑅𝑟𝑠(780) and 𝑅𝑟𝑠(720).  

The coefficient of variation (CV) (Equation 4) of the 𝑅𝑟𝑠 spectra replicates was computed 

for each station. Only the spectrum with CV close or lower than 10% between the interval of 

400-840 was kept and the average was calculated to get the final spectrum utilized in this 

study as representative of 𝑅𝑟𝑠 at each station. 

 

𝑐𝑣 =
𝜎

𝜇
                                                                  (4) 

 

Several empirical algorithms have been developed to estimate CDOM considering 

various levels of water turbidity and remote sensing sensors. While the blue/green band ratio 

is often considered as the input parameter of such empirical formulations (Tassan, 1994; 

Kutser et al., 2005; Mannino et al., 2014), many algorithms have been documented 

considering alternative band ratios including green/blue (Griffin et al., 2011), green/red 

(Kutser et al., 2005; Kutser et al., 2015), blue/red (Mannino et al., 2014), red/blue (Tiwari and 

Shanmugam, 2011) and blue/NIR (Brezonik et al., 2005). Six acdom(412) empirical inversion 

algorithms based on different hypotheses regarding the input parameters have been considered 

in the frame of this study (Table 1).  

 

Table 1. Empirical algorithms used to retrieve CDOM absorption coefficient in the Lower 

Amazon River from in situ-measured remote sensing reflectance data. 

 

Algorithm  Input Rrs (nm) Data sets/ study sites Reference 

G11 

560

485
 Kolyma River, East Syberia Griffin et al., 2011 

K05 

480

560
 Lakes in Sweden and Finland Kutser et al., 2005 

B05 

478

835
 Minnesota Lakes, U.S. Brezonik et al., 2005 

M14 

412

670
 

Continental margin of the northeastern of U.S. Mannino et al., 2014 

T11 

670

490
 NOMAD dataset, coastal and ocean waters 

Tiwari and 

Shanmugan, 2011 

K15 

559

664
 

Swedish Lakes Kutser et al., 2015 
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3. Results and Discussion 

The measured CDOM absorption coefficients at the Lower Amazon region presented high 

values for all stations (N=54). It should be noted that CDOM absorption still present very 

high values in the green wavelength (i.e. 𝑎𝐶𝐷𝑂𝑀(560) = ~0.4 𝑚−1) (Figure 2) and should 

therefore significantly impact the 𝑅𝑟𝑠spectra in this spectral range. 

 

 
Figure 2. In situ-measured CDOM absorption coefficients in all stations at the Lower Amazon 

River region (N=54).  

 

Although the R06 method shows a good performance with low CV in all spectra, it 

should be noted that a scatter in the 𝑅𝑟𝑠measurements is still relatively important at 412 nm 

and 835 nm (Figure 3). 

 

 
Figure 3. Average of the coefficient of variation (%) for all stations per season sampling. The 

X axis shows the selected wavelengths for the development of empirical algorithms to 

estimate CDOM absorption coefficient by remote sensing. 

 

A performance comparison exercise of the six empirical algorithms reported in Table 1, 

and fitted to our dataset was conducted (Figure 4). Globally, methods based on blue to green 

ratios (G11 and K05) showed lower performances. This behavior might be caused by the 

remaining high CDOM absorption in the green part of the spectra (Figure 2) or due to the 

presence of particulate matter. The approach based on the NIR information (B05) showed also 

relatively poor potential probably due to the higher uncertainties in our 𝑅𝑟𝑠 data in this 

spectral domain (Figure 3). The M14 and T11 formulations based on the blue and red bands 

conversely presented a better potential for application in our study region.  The relatively 

lower performance of the M14 algorithm when compared to T11 might be related to the 
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higher uncertainties in 𝑅𝑟𝑠 measurements at 412 nm. The best algorithm performance for our 

dataset was obtained with the K15 (559/664 nm). This might be due to the fact that the Lower 

Amazon is a region with high CDOM loads, which still highly influence 𝑅𝑟𝑠 values in the 

green band (Figure 2). It should be noted that the CV of 𝑅𝑟𝑠 data in the two bands considered 

by the latter algorithm are relatively low, explaining the lower scatter in the relationship when 

compared to other formulations. 

Considering the data presented in this study, the relationship between K15 and acdom(412) 

at the Lower Amazon can be describe as follows (Equation 5): 

 

𝑎𝐶𝐷𝑂𝑀(412) = 10(−0.53.(𝐾15) +1.05)                                  (5) 

 

 
Figure 4. Empirical algorithms used to estimate acdom(412) at the Lower Amazon region (see 

text for bands used in each algorithm). 

 

To better understand the dispersion of the samples around the relationships between 𝑅𝑟𝑠 

and acdom(412), the dataset was partitioned according to the water color, i.e. splitting Amazon 

River water and the other rivers (Tapajós, Xingu, Paru and Jari) (Figure 5a), as well as 

according to the season of data acquisition (Figure 5b). The Amazon River samples are 

characterized by higher acdom(412) values while clear water samples are more scattered, 

explaining the obtained relationship. Likewise, the season is determinant in the dispersion of 

the samples, which refers to the mixture of the Amazon waters with the clear waters in the 

location of sampling. During the Rising and High season, the Amazon River overflows and 

mixes with other rivers. The K15 algorithm applied to our dataset tends to globally 

underestimate acdom(412) (Bias = -8) with a relative error (Mean Relative Absolute Difference 

- MRAD) of 15% (Figure 5c). 
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Figure 5. Relationship between acdom(412) and K15 for: a) Amazon River and other rivers 

(Tapajós, Xingu, Paru and Jari); b) During different sampling season (Rising, High, Falling 

and Low); c) Plot of measured and estimated log(acdom412).  

 

When all the six empirical algorithms are applied to the partitioned samples (Amazon 

River and others rivers) the results are different (Table 2). It is evident that the clear water 

river drives the response of the obtained fit when all the samples are considered together.  The 

K15 has no significant relationship when just Amazon samples are considered (R2=0; RMSE 

= 0.08; p-value>0.05) while its coefficient of determination is higher (R2=0.68; RMSE = 0.14; 

p-value<0.05) when just the clear water rivers are considered. These results suggest that no 

simple unique relationship of any band ratio can be used to retrieve acdom from the Amazon 

River. Otherwise, different approaches should be further explored. It is likely that the poor 

performance of the band ratio approach presented here is related to the influence of suspended 

sediments in the water (Brezonik et al., 2015). Considering another spectral band to correct 

for the influence of the particles could improve the relationship. The optical heterogeneity 

should be considered when developing a CDOM inversion algorithm retrieval for the 

Amazonian river waters.    

 

Table 2. Statistics of the relationships between six empirical algorithms and in situ-measured 

acdom(412) when samples are partitioned into Amazon River and Other Rivers groups.  

 

  Amazon River Other Rivers 

 

R2 RMSE p-value R2 RMSE p-value 

G11 0,08 0,08 >0,05 0,04 0,24 >0,05 

K05 0,12 0,07 <0,05 0,04 0,24 >0,05 

B05 0,14 0,07 <0,05 0,44 0,18 <0,05 

M14 0,12 0,07 <0,05 0,52 0,17 <0,05 

T11 0,01 0,08 >0,05 0,57 0,16 <0,05 

K15 0,00 0,08 >0,05 0,68 0,14 <0,05 

 

 

4. Conclusion 

Among all the six empirical algorithms tested in this work, the K15 (559/664 nm) shows 

the best relationship with acdom(412) when all samples are considered. When the samples are 

partitioned into Amazon River and Other Rivers (clear water rivers) the relationships are 

different. All the empirical algorithms presented a higher coefficient of determination when 

just clear water rivers are considered, and no significant relationship is obtained when just the 

Amazon River is considered. The results suggest that other optically active constituent might 

be interfering in the CDOM retrieval and it is likely to be suspended sediments. Therefore, 

different approaches should be explored to correct for the influence of particles, such as, for 

instance, adding another spectral band or developing a specific index for suspended 

sediments. The difference observed between the relationship of the inversion algorithm for the 

Amazon River and for the clear water rivers also foments the discussion about the necessity of 

having two different algorithms, specific for each water type or a more general algorithm that 

is independent of this variability. It is also shown that the sampling season is also determinant 

in the algorithm performance for acdom(412) estimation. During the Rising and High season, 

the Amazon water is mixed with clear waters enhancing its CDOM loads. Our results are a 

step forward to the understanding of the relationship between 𝑅𝑟𝑠 and acdom(412) in the Lower 
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Amazon region and contributes with remote sensing application in the study of very turbid 

inland waters.   
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