Redução do erro de estimativa da concentração de clorofila-*a* no reservatório de Bariri por meio do fator de proporcionalidade (ρ)

Ana Carolina Campos Gomes¹ Nariane Bernardo¹ Fernanda Watanabe¹ Luiz Henrique Rotta¹ Thanan Rodrigues¹ Enner Alcântara²

¹Departamento de Cartografia, Universidade Estadual Paulista – Unesp, Campus de Presidente Prudente, SP

{camposgomes.ac, narianebernardo, fernandasyw, luizhrotta, twalesza}@gmail.com

²Departamento de Engenharia Ambiental, Universidade Estadual Paulista – Unesp, Campus de São José dos Campos, SP enner.alcantara@ict.unesp.br

Abstract. The remote sensing reflectance (R_{rs}) plays an important role in estimating the composition of an aquatic environment. It depends on the total radiance reaching the sensor (L_t) , the downwelling spectral plane irradiance incident onto the water surface (E_d) and the radiance incident from the sky (L_s) . The weather conditions, as wind speed, can be considered to correct the L_s value. The proportionality factor that relates these conditions is known as reflectance factor ρ . A set value was proposed for ρ to estimate R_{rs} , however it can also be calculated onwards the wind speed and the L_s geometry of measurement. An error on the R_{rs} estimate can affected the estimate of other radiometric quantities dependent on R_{rs} such as absorption (a) and scattering (b) coefficients. A correct R_{rs} estimate can ensure more accurate measurements of L_s and reduce the errors on the optically active compounds (OAC) estimates. The aim of this paper was to evaluate the influence of the ρ on the R_{rs} to estimate chlorophyll-a concentration in the Bariri reservoir. The results showed that an empirical model using a variable ρ to obtain R_{rs} values in order to calculate chlorophyll-a concentration had 6,5% less error when compared with ρ set value. Therefore we can conclude that the use of a set ρ value will improve the errors in estimating the R_{rs} and consequently in estimating the chlorophylla concentration.

Palavras-chave: OLI/Landsat-8, optical properties, empirical model, inland waters, OLI/Landsat-8, propriedades ópticas, modelo empírico, águas interiores.

1. Introdução

A reflectância de sensoriamento remoto (R_{rs}) pode ser amplamente utilizada na avaliação da composição de um corpo d'água e nas estimativas de coeficientes de absorção (*a*) e espalhamento (*b*) da luz solar do ambiente aquático. Estes coeficientes dependem diretamente dos componentes opticamente ativos presentes na água. A R_{rs} é a base do desenvolvimento de algoritmos para determinação destes coeficientes. Devido às várias limitações técnicas e as dinâmicas randômicas da superfície aquática, uma determinação acurada do valor de R_{rs} se torna um desafio (Lee et al., 2010).

Mobley (1999) propõe a estimativa da R_{rs} a partir da equação que relaciona três medidas: a irradiância descendente incidente sobre o corpo d'água (E_d) , radiância incidente do céu (L_s) e radiância total (L_t) que denota a soma da radiância que deixa a

superfície aquática e parte da radiância do céu que é refletida por ela. A Equação 1 mostra a relação entre estas grandezas.

$$R_{rs} = \frac{L_t - \rho L_s}{E_d} \tag{1}$$

 ρ é um fator de proporcionalidade que é multiplicado por L_s . Esse fator depende do ângulo de visada do sensor, da velocidade do vento e condições atmosféricas e da distribuição de radiância solar (Mobley, 1999; Lee et al., 2010).

Uma das propostas para a determinação do valor ρ é o uso da tabela de valores derivada a partir de simulações numéricas com diferentes velocidades do vento e geometrias de visada (Lee et al., 2010).

Austin (1994) apresenta uma tabela com valores de ρ computados com base nas estatísticas desenvolvidas sobre a rugosidade superficial da água do mar. Os cálculos foram feitos considerando uma distribuição uniforme da radiância do céu e de que não houveram reflexões diretas dos raios solares dentro do ângulo de visada do sensor (FOV). Para um FOV igual a 40°, um valor médio de ρ de 0,028 é geralmente utilizado nos cálculos da R_{rs} .

Ao não se considerar as condições específicas no instante da aquisição das medidas radiométricas, o valor de radiância proveniente da superfície da água se reduz. Os efeitos causados pelo aumento da velocidade do vento, por exemplo, pode refletir a maior parte da energia solar e subestimar os componentes opticamente ativos (COAs) presentes na água, que fazem uso do R_{rs} . (Mobley, 1999). Com o objetivo de reduzir o erro de estimativa da R_{rs} , Mobley (2015) propôs uma tabela em que os valores de ρ , estão relacionados com a velocidade do vento, ângulo zenital solar e os ângulos de aquisição dos dados. O cálculo adequado do ρ pode garantir ponderações mais acuradas nas medidas de radiância proveniente da superfície da água e reduzir os erros nas posteriores estimativas dos COAs.

O ρ variável para cada ponto amostral pode melhorar a estimativa dos valores de concentração de clorofila-*a* ([Chl-*a*]) em relação à aplicação de um valor de ρ fixo para todo o conjunto amostral.

Assim, esse trabalho teve como objetivo avaliar o erro de estimativa de [Chl-a] via R_{rs} , considerando dois cenários: (1) utilizando ρ fixo e (2) variando o valor de ρ de acordo com as condições de geometria de aquisição e velocidade do vento. Para realizar esse experimento, o reservatório de Bariri situado no sistema de cascata do rio Tietê, São Paulo foi selecionado.

2. Materiais e Métodos

2.1 Área de Estudo

O reservatório de Bariri está localizado no meio da bacia do Rio Tietê, no Estado de São Paulo (Figura 1). A construção do reservatório teve como finalidade a produção de energia hidrelétrica, a irrigação e recreação. É um ambiente aquático altamente eutrofizado, com concentrações de fósforo total de 87,0 μ g/L, 2750 μ g/L de nitrogênio total e 55,8 μ g/L de clorofila-*a* (González, 2008).

2.2 Dados

Os dados foram coletados entre os dias 15 e 18 de agosto de 2016, entre os horários 10:00h e 14:00h devido à maior incidência solar, coincidindo com umas das passagens do sensor OLI/Landsat-8 sobre o reservatório de Bariri. As coletas foram realizadas em 30 pontos georreferenciados no datum WGS84 distribuídos ao longo do reservatório. Nesta campanha de campo, foram medidos dados de qualidade de água e radiométricos.

Figura 1. Área de estudo mostrando a localização no contexto brasileiro (a), Sistema de reservatórios em cascata do Rio Tietê, mostrando a localização do reservatório de Bariri (b) e a localização das amostras (c), mostrando as amostras utilizadas para calibração e validação.

2.3.1 Dados de qualidade de água

Foram coletados na sub-superfície aquática, amostras de água para determinação de [Chl-*a*] (μ g/L). Os parâmetros físico-químicos coletados foram profundidade do disco de Secchi (m), profundidade (m), turbidez (NTU), condutividade elétrica (μ S), temperatura (°C), pH e velocidade do vento (m/s) coletados, respectivamente, pelos equipamentos disco de Secchi, profundímetro, turbidímetro, condutivímetro, termômetro, pHmetro e anemômetro, realizados em triplicata para maior confiabilidade dos dados.

2.3.2 Dados Radiométricos

As medidas as grandezas de L_s , L_t e E_d foram realizadas por meio do instrumento RAMSES/TriOS (Rastede, Alemanha). Estes dados foram processados no programa MSDA_XE e posteriormente interpolados com resolução de 1 nm com base nas medianas dos dados coletados. Com essas medidas foi possível calcular a R_{rs} . O cálculo da R_{rs} foi realizada considerando ρ fixo ($\rho \approx 0.028$), de acordo com Mobley (1999) e ρ variando com as considerando a velocidade do vento e o ângulo zenital solar no instante da leitura (Mobley, 2015).

O valor de ρ ainda depende da geometria de aquisição dos dados radiométricos que, seguindo a metodologia de Mobley (1999), θ_{ν} (ângulo zenital de visada do sensor medido em relação ao nadir) igual a 40° segundo a geometria construída para o suporte dos sensores e φ_{ν} (ângulo azimutal do barco) igual a 90°. É recomendável que o sensor seja posicionado em ângulos retos em relação à direção do sol, no plano vertical perpendicular ao plano azimutal, para minimizar os efeitos de retroespalhamento especular e de sombra do barco.

Sendo assim, foi possível encontrar o valor de ρ correspondente na tabela desenvolvida por Mobley (2015). Como foi desenvolvida para águas oceânicas, os valores de velocidade de vento foram considerados para este ambiente, eventualmente, não tão condizentes com o ambiente de águas interiores. Para os valores de velocidade de vento intermediários obtidos, foram realizadas interpolações entre as medidas disponíveis nesta tabela.

2.3. Estimativa de Concentração de Clorofila-a

A fim de encontrar o comprimento de onda que mais se relaciona com a [Chl-*a*] foram elaborados correlogramas confrontando a [Chl-*a*] e R_{rs} calculadas com o ρ fixo e com o ρ específico para cada ponto. Para o comprimento de onda com maior valor de coeficiente de correlação (r – Equação 2) correspondente, foram desenvolvidos dois modelos empíricos (modelos de regressão linear) com a variável resposta [Chl-*a*] (µg/L) dependente dos dados de R_{rs} .

$$r_{jk} = \frac{\sum_{i=1}^{n} (x_{ij} - x_{imédio})(x_{ik} - x_{kmédio})}{\sqrt{\sum_{i=1}^{n} (x_{ij} - x_{jmédio})^2} \sqrt{\sum_{i=1}^{n} (x_{ik} - x_{kmédio})^2}}$$
(2)

Para validar os modelos gerados, foram separados previamente, de forma aleatória, 10 pontos amostrais. Para classificar qual modelo se ajustou melhor na estimativa de [Chl-*a*] (µg/L) foram avaliados a raiz do erro médio quadrático (RSME - *Root Mean Square Error* – Equação 3), a raiz do erro médio quadrático normalizado (NRSME - *Normalized Root Mean Square Error* – Equação 4) e o coeficiente de determinação, R² (Equação 5).

$$RSME(\%) = \sqrt{\frac{SQRes}{n}}$$
(3)

$$NRSME = \frac{RSME}{(Y_{max} - Y_{min})} \tag{4}$$

$$R^2 = \frac{SQReg}{SOTotal} \tag{5}$$

Onde: $x_{ij} = i$ -ésima medida da variável j; $x_{ik} = i$ -ésima medida da variável k; $x_{jmédio} =$ média dos valores da variável j; $x_{kmédio} =$ média dos valores da variável k; SQRes = soma dos quadrados dos resíduos dado por $\sum_{i=1}^{n} (y_i - y_{aj})^2$, com $y_i = i$ -ésima medida da variável resposta e $y_{aj} = i$ -ésima medida da variável resposta ajustada; n = número de amostras; $Y_{máx} =$ valor máximo da variável resposta (no caso, clorofila-*a*); $Y_{mín} =$ valor mínimo da variável resposta (no caso, clorofila-*a*); SQReg = soma dos quadrados obtida pelo modelo de regressão; SQTotal = soma dos quadrados da regressão mais dos resíduos.

Foi gerado um sumário gráfico, com as formas, tendências centrais e variabilidade de cada modelo considerado (*boxplot*) no programa estatístico Minitab. Os dados de R_{rs} calculados a partir do ρ fixo e do ρ variável foram comparados entre si em relação às bandas centrais do sensor OLI/Landsat-8 (Barsi et al., 2014).

3. Resultados e Discussão

3.1 Dados de qualidade da água

A estatística descritiva dos dados de qualidade de água amostrados no reservatório de Bariri é apresentada na Tabela 1. O valor médio de [Chl-*a*] foi de 119,76 μ g/L. Isso se deve a alta presença de organismos algais em alguns pontos de descarte de poluentes provenientes da região metropolitana da cidade de São Paulo (Watanabe et al., 2010). Como o reservatório está situado a montante no sistema de cascata, quantidades relevantes de nutrientes e sólidos suspensos totais dos demais reservatórios também são carreados, como é o caso de Barra Bonita e Bariri.

A variância de 25584,20 é bastante alta devido a espacialização de clorofila-*a* no reservatório, com uns pontos mais eutrofizados do que outros como o que acontece com os que estão próximos a barragem (maior poder de retenção e menor de diluição). Isto

pode estar relacionado também com a variação de profundidade entre os pontos amostrais (variando de 5,6 a 19,6 m).

Tabela 1. Estatística descritiva dos dados de qualidade da água. As siglas referem-se a:
DS: profundidade do disco de Secchi, Prof.: profundidade, Turb.: turbidez, Cond.:
condutividade elétrica, T: temperatura.

	[Chl-a]	DS	Prof (m)	Turb.	Cond.	T (°C)	рН	Vento
	$(\mu g/L)$	(m)	F101. (III)	(NTU)	(µS)	I (C)		(m/s)
Média	119,76	1,16	12,00	16,60	122,80	24,33	7,94	3,47
Desvio Padrão	±159,95	±0,29	±3,66	±13,98	±13,19	$\pm 5,06$	±0,97	±2,12
Máximo	709,89	1,60	19,60	80,90	152,50	39,40	9,90	8,00
Mínimo	25,67	0,50	5,60	7,80	106,00	21,10	6,10	0,00
Alcance	684,22	1,10	14,00	73,10	46,50	18,30	3,80	8,00

A variância da turbidez e da profundidade do disco de Secchi também nos fornecem um indicativo de pontos com alto grau de eutrofização em relação aos demais, o que acarreta em menor transparência nos pontos mais túrbidos. O ambiente se apresenta, em média (pH = 7,94), como básico. A velocidade do vento variou de 0 a 8 m/s. Um fator importante que pode alterar a estimativa da R_{rs} .

3.2 Espectros de R_{rs}

Os valores de R_{rs} foram calculados, no intervalo espectral de 400 a 850 nm, considerando o fator ρ fixo proposto por Mobley (1999) igual a 0,028 e considerando as especificidades como, velocidade do vento e ângulo zenital solar de cada ponto amostral. A Figura 2 mostra, respectivamente, as curvas espectrais resultantes de cada procedimento realizado, com ρ fixo e ρ variável.

Figura 2. Curvas espectrais, nos intervalos de 400 a 850 nm, de R_{rs} . a) Calculada usando ρ fixo fixo e b) calculada usando ρ variável.

Por meio da Figura 2, é possível notar aumento relevante dos valores de R_{rs} calculados a partir do ρ médio, o que mascara os valores reais de R_{rs} representativos de cada ponto amostral desta área de estudo. Em destaque, o ponto P25 se mostra com comportamento diferente dos demais pontos, apresentando certa elevação na R_{rs} . Isso pode estar relacionado a algum erro sistemático na tomada das medidas.

Os pontos P07, P08 e P09 apresentaram picos expressivos nas regiões espectrais do verde (550 nm), do vermelho (700-720 nm) e do infravermelho próximo (760-800 nm) devido às altas concentrações de clorofila-*a*, estando acima da média para este reservatório, com 217,33 μ g/L, 623,70 μ g/L e 709,89 μ g/L, respectivamente.

O correlograma (Figura 3) destaca a diferença das relações entre as R_{rs} calculadas com o ρ fixo e o ρ variável e as [Chl-a] encontradas para o intervalo espectral de 400 a 850 nm.

Figura 3. Correlograma entre [Chl-a] e R_{rs} calculados com ρ fixo (a) e ρ variável (b).

O maior valor de coeficiente de correlação (r = 0,88) encontrado foi para o cálculo utilizando o ρ variável. Esse valor correspondeu ao comprimento de onda 720 nm (região do infravermelho próximo). Tomando-o como referência, o valor do coeficiente de correlação para o cálculo de R_{rs} utilizando o ρ fixo para o mesmo comprimento de onda foi r = 0,72 (720 nm).

Dois modelos empíricos (Figura 4) foram desenvolvidos considerando os valores de R_{rs} calculados para o comprimento de onda de 720 nm. Um modelo representado pelo ρ fixo e o outro, pelo ρ variável. Os modelos utilizaram 20 pontos amostrais, sendo que os outros 10 pontos foram separados previamente para a validação.

Figura 4. Modelos empíricos para estimativa das [Chl-*a*] (μ g/L) e as R_{rs} para ρ fixo (a) e ρ variável (b).

O teste de análise estatística permitiu os cálculos dos RSME e NRSME, disponibilizados na Tabela 2.

Tabela 2.	Análise	estatística	dos	erros	inseridos	em	cada	modelo	calculado	
1 00 0 100 -0		• • • • • • • • • •					••••••		•••••••	•

Modelo	RSME	NRSME
ρ fixo	89,30%	18,50%
ρ variável	82,52%	12,00%

A diferença da raiz quadrada do erro quadrático médio normalizado entre o modelo utilizando os dados de R_{rs} calculados com o ρ fixo e com o ρ variável foi igual a 6,50%. Considerando o uso das medidas de R_{rs} para estimativa de outras variáveis do meio aquático como coeficientes de absorção e retroespalhamento, essa diferença residual pode ser propagada e somada aos erros relativos às estimativas.

Figura 5. Boxplot para as R_{rs} em relação às bandas centrais do sensor OLI/Landsat-8.

O *boxplot* (Figura 5) estruturado para os comprimentos de onda centrais das bandas do sensor OLI/Landsat-8 revela as principais diferenças entre as medidas de R_{rs} calculadas com o ρ fixo e com o ρ variável.

De acordo com a Figura 5, os valores de R_{rs} calculados a partir do ρ fixo para todos os pontos são superestimados e apresentam distribuição de dados mais acentuada do que para os valores de ρ variável. É possível notar mudanças abruptas dos valores de R_{rs} obtidas pelo ρ fixo ao longo dos comprimentos de onda. Isso está relacionado com a padronização dos valores nos pontos amostrais, ignorando as condições de vento e posição solar em cada medida. A utilização do ρ variável ponderando os valores de radiância de superfície no instante da aquisição das medidas garante que efeitos externos possam ser eliminados e assim, as variações de R_{rs} se apresentem menores ao longo dos comprimentos de onda.

Nas bandas centrais de 562 nm e 865 nm, a tendência dos valores de R_{rs} a partir do ρ variável é de se aproximarem da mediana devido as [Chl-*a*] no reservatório, que fazem o corpo d'água apresentar respostas espectrais semelhantes às da vegetação. Os *outliers* identificados não tiveram suas influências testadas.

4. Considerações Finais

Este trabalho levantou a hipótese da influência da velocidade do vento na tomada das medidas de radiância proveniente do céu e sua correção por meio do fator ρ nas estimativas dos componentes opticamente ativos como as [Chl-*a*] (µg/L) em ambiente aquático eutrofizado. Os resultados preliminares indicam que o uso de um ρ variável considerando as condições de velocidade do vento, ângulo zenital solar e de visada no cálculo da R_{rs} reduz, em média, 6,5% do erro na estimativa de [Chl-*a*] (µg/L). Isto está, principalmente relacionada à eliminação dos efeitos de espelhamento da superfície da água na leitura da radiância.

Agradecimentos

Os autores agradecem à Fundação de Pesquisa do Estado de São Paulo - FAPESP (Projetos 2012/19821-1 e 2015/21586-9) e ao Conselho Nacional de Desenvolvimento Tecnológico e Científico - CNPq (Projetos 400881/2013-6 e 472131/2012-5) pelo apoio financeiro.

Referências Bibliográficas

Austin, R. W. Inherent spectral radiance signatures of the ocean surface. In: Duntley, S. Q., Austin, R. W., Wison, W. H., Edgerton, C. F., Moran, S. E. **Ocean color analysis**. SIO. Ref. 74-10. Scripps Institution of Oceanography, La Jolla, California, 1974.

Barsi, J.A., Lee, K., Kvaran, G., Markham, B.L., Pedelty, J.A. The spectral response of the Landsat-8 Operational Land Imager. **Remote Sensing**, v. 6, p. 10232–10251, 2014.

González, E. J., Matsumura-Tundisi, T., Tundisi, J. G. Size and dry weight of main zooplankton species in Bariri reservoir (SP, Brazil). **Brazilian Journal of Biology**, v. 68, n. 1, p. 69-75, 2008.

Lee, Z. P., Y.-H. Ahn, C. D. Mobley, and R. Arnone. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform. **Optics Express**, v. 18(25), p. 26313-26324, 2010.

Mobley, C.D., Estimation of the remote-sensing reflectance from above-surface measurements. **Applied Optics**, v. 38(36), p. 7442-7455, 1999.

Mobley, C.D. Polarized reflectance and transmittance properties of wind-blown sea surfaces. **Applied Optics**, v. 54(15), p. 4828-4849, 2015.

Watanabe, F. S. Y., Alcântara, E., Rodrigues, T. W. P., Imai, N. N., Barbosa, C. C. F., Rotta, L. H. S. Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images. **International Journal of Environmental Research and Public Health**. v. 12(9), p. 10391-10417, 2015.