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Abstract. We compare WM, OWA and WOWA filters in mean SAR images, respectively based on the parame-
terized families of operators WM (Weighted Means), OWA (Ordered Weighted Average) and WOWA (Weighted
OWA). The WM and OWA operators use a single vector to weight an input data vector: one whose weights corre-
spond to the same positions in the input, and another that considers the ordered positions of the input, respectively.
WOWA operators, however, use both of these weight vectors. We present an application on SAR imagery, using
simulated images derived from from a real-world scene and 5 × 5 windows, in which we make use of a Genetic
Algorithm to tune the parameters of these families of operators.
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1. Introduction
The Weighted Mean operators (WM) attain a convex combination of a set of values, using

a weight vector p, whose weights dimension the significance of the data with independence of
the value that the source has captured. The Ordered Weighted Average operators (OWA) were
introduced by Yager (1988), in the Fuzzy Sets Theory domain. This family of mean operators
produce a convex arrangement of a set of ordered values, using a weight vector w. In OWA,
contrarily to WM, the weights measure the importance of a value (in relation to other values)
with independence of the source that has captured it (TORRA, 1997). Another important family
of mean operators is the Weighted OWA (WOWA) operators, proposed by Torra (1997), that
use both vectors p and w to weight data, and aims to take advantage of the gains of both OWA
and WM operators.

In previous works Torres et al. (2015, 2016a), we introduced OWA filters, that use OWA
operators for data filtering. In these papers, we explored some strategies to learn vector w in
OWA filters to reduce speckle in SAR imagery, using Genetic Algorithms (GA) (HOLLAND,
1975). In both works we only dealt with intensity images; in Torres et al. (2015) we addressed
a single polarization (HH) and 3 × 3 windows, whereas in Torres et al. (2016a) we addressed
three polarizations (HH, HV and VV) and 5 × 5 windows. Recently, we introduced WOWA
filters (TORRES et al., 2016b), based on WOWA operators, and addressed three strategies to
learn the weight vectors using GAs, employing only the HH polarization and 3× 3 windows.

This work proposes a new study with the application of the WM, OWA and WOWA filters
for speckle noise reduction in SAR imagery, in polarizations HH, HV and VV. We use 5×5 win-
dows and the best strategy for learning WOWA filters, according to the experiments in Torres et
al. (2016b). As in the works with OWA and WOWA filters, we use a fragment of a phantom de-
scribed in Saldanha (2013), with the synthetic images for the polarizations simulated using the
parameters for Wishart distributions estimated in Silva et al. (2013) from a real-world scene. We
have also compared the results of our filters with those issued by two model-dependent filters
proposed in Lee et al. (2006) and Torres et al. (2014).

2. Basic concepts on SAR images
Synthetic Aperture Radar (SAR) data are generated by a system of coherent illumination

and are affected by the coherent interference of the signal. It is known that these data incorporate
a granular noise that degrades its quality, known as speckle noise, which is also present in the
laser, ultrasound-B, and sonar imagery (LEE; POTTIER, 2009). The noise makes it a hard task
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to obtain the segmentation, extraction, analysis and, classification of objects and information in
SAR images.

SAR systems generate the image of a target area by moving along a usually linear trajec-
tory, and transmitting pulses in lateral looks towards the ground, in either horizontal or vertical
polarizations (RICHARDS, 2009), respectively denoted as H and V. In most imaging radars, the
bands use frequencies in the 2MHz to 12.5GHz range, with wavelengths between 2.4cm and
1m.

The reception of the transmitted energy used to be made on the same polarization of the
transmission only, generating images in the HH and VV polarizations. Nowadays, with the ad-
vent of polarimetric or polarized radars (PolSAR), images relating to HV and VH polarizations
are also obtained, using information about intensity and phase of the cross signals.

A complex image is generated for each polarization from a given a scene, with the real and
imaginary components for each pixel. The complex images from HH, VV, and HV polarizations
are denoted as SHH, SHV, and SVV. Multiplying the vector [SHH SHV SVV] by its transposed
conjugated vector [S∗HH S∗HV S∗VV]t, a 3× 3 covariance matrix is obtained. The three images
in the main diagonal, denoted by IHH, IHV, and IVV, contain intensity values.

2.1 Filters for SAR imagery
According to Lee and Pottier (2009), SAR image filtering requires preserving the target

response. Such requirement can be posed as: (i) each element of the image should be filtered in
a similar way to multilook processing by averaging the data of neighboring pixels; and (ii) ho-
mogeneous regions in the neighborhood should be adaptively selected to preserve resolution,
edges and the image quality. The second requirement, i.e. selecting homogeneous areas given
similarity criterion, is a common problem in pattern recognition and artificial intelligence. It
boils down to identifying observations from different stationary processes.

The simplest filters are linear filters that employ the convolution operation, described as
follows. Given an image I , whose pixels take values in R, a m ×m window around the cen-
tral pixel (x, y) in I , and a matrix of coefficients γ : {−m, ..., 0, ...,m}2 → R, the result of
convolution is a filtered image Iγ , calculated as

Iγ(x, y) =
∑

i=−m,m

∑
j=−m,m

γ(i, j)× I(x+ i, y + j).

Order Statistics Filters (BOVIK et al., 2005) are a general class of filters in which the result
of filtering for a given pixel is the linear combination of the ordered values of the pixels in the
window around that pixel. These filters belong to the larger class of non-linear filters based
on order statistics (PITAS; VENETSANOPOULOS, 2013), an application of L-estimators. An
OSF is obtained when a convolution filter is applied on the ordered statistic of the pixel values
in a window.

More complex filters are obtained with the adoption of a model to the noise. The so-called
Lee filter is one of such filters. In this filter, speckle reduction is based on multiplicative noise
model using the minimum mean-square error (MMSE) criterion (LEE et al., 1991, 1999). An
improved version of the Lee filter, known as the Refined Lee filter (LEE et al., 2006), here
called R-Lee filter, uses a methodology for selecting neighboring pixels with similar scattering
characteristics.

Another model-dependent filter is the Nonlocal Means (NL-means) Buades et al. (2005),
which uses similarities between patches as the weights of a mean filter, and is known to decrease
additive Gaussian noise. A more recent filter, the Stochastic Distances and Nonlocal Means
filter (SDNLM) (TORRES et al., 2014), is an adaptive nonlinear extension of the NL-means
algorithm filter. In SDNLM, overlapping samples are compared based on stochastic distances
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between distributions, and the p-values resulting from such comparisons are used to build the
weights of an adaptive linear filter.

2.2 Image Quality Assessment for SAR imagery
According to Wang et al. (2002) image quality assessment in general, and filter performance

evaluation in particular, are hard tasks and crucial for most image processing applications. Two
important indices used on quality assessment of filtered images are NMSE and SSIM, described
below.

The NMSE (Normalized Mean Square Error) index is a general purpose error measure,
widely employed in image processing (see Baxter and Seibert (1998)). Let r be the perfect
information data and s an approximation of r; NMSE is calculated as:

NMSE =

∑n
j=1(rj − sj)2∑n

j=1 r
2
j

, (1)

where rj and sj refer to values in r and s at the same coordinates (the position of a given pixel
in the case of images). NMSE always yield positive values, and the lower its value, the better
is the approximation considered to be.

The SSIM (Structural SIMilarity) index is an improved version of the universal image qual-
ity index proposed proposed by Wang and Bovik (2002). SSIM measures the similarity between
two scalar-valued images; it can be viewed as a quality measure of one of the images, when the
other image is regarded as of perfect quality (WANG et al., 2004). SSIM takes into account three
factors: (i) correlation between edges; (ii) brightness distortion; and (iii) distortion contrast. Let
r and s be the perfect information and its approximation, respectively; SSIM is calculated as

SSIM(r, s) =
Cov(r, s)+α1

σ̂rσ̂s+α1

× 2rs+α2

r2+s2+α2

× 2σ̂rσ̂s+α3

σ̂2
r+σ̂2

s+α3

, (2)

where r and s are sample means, σ̂2
r and σ̂2

s are the sample variances, Cov(r, s) is the sample
covariance between r and s, and constants α1, α2 and α3 are used the index stabilization. SSIM
ranges in the [−1, 1] interval, and the higher its value, the better is the approximation considered
to be.

3. WM, OWA and WOWA operators
Let p be a weighting vector of dimension n (p = [p1 p2 ... pn]), such that:
• (i) pi ∈ [0, 1];
• (ii) Σipi = 1.

A mapping fwmp : Rn → R is a Weighted Mean Operator (WM) of dimension n, associated
to p, if:

fwmp (a1, ..., an) = Σi pi × ai. (3)

The Ordered Weighted Average operators (YAGER, 1988) and the Weighted OWA opera-
tors (TORRA, 1997) are important families of aggregation operators, proposed in the context
of Fuzzy Sets Theory.

Let w be a weighting vector of dimension n (w= [w1 w2 ... wn]), such that:
• (i) wi ∈ [0, 1];
• (ii) Σiwi = 1.

A mapping f owaw : Rn → R is an Ordered Weighted Average Operator (OWA) of dimension n,
associated to w, if (YAGER, 1988):

f owaw (a1, ..., an) = Σi wi × aσ(i), (4)
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where {σ(1), ..., σ(n)} is a permutation of {1, ..., n} such that aσ(i−1) ≥ aσ(i), for all i = {2,...,
n} (i.e., aσ(i) is the i-th largest element in {a1, ..., an}).

Some well-known OWA operators are the mean, min, max and median, which are obtained
with OWA vectors wmean, wmin, wmax, and wmed, respectively. For n = 3, we have: wmean =
[1/3, 1/3, 1/3], wmin = [0, 0, 1], wmax = [1, 0, 0], and wmed = [0, 1, 0].

Let p and w be weighting vectors as given above. A mapping fwowaw,p : Rn → R is a
Weighted Ordered Weighted Average (WOWA) operator of dimension n, associated to p and w,
if (TORRA, 1997):

fwowaw,p,φ (a1, ..., an) = Σi ωi × aσ(i), (5)

where {σ(1), ..., σ(n)} is a permutation of {1, ..., n}, for all i = {2,..., n}, such that aσ(i−1) ≥
aσ(i), weight ωi is defined as

ωi = φ(Pσ(i))− φ(Pσ(i− 1)), (6)
Pσ(i) = Σj≤i pσ(j), (7)

and φ is a monotone increasing function that interpolates points (0, 0) and (i/n,
∑

j≤iwj),
i = 1, n. Function φ is required to be a straight line when the points can be interpolated in
a linear way. Torra (1997) proves that the ωi’s compose a weighting vector of dimension n
(ω = [ω1 ... ωn]), such that:

• (i) ωi ∈ [0, 1];
• (ii) Σiωi = 1.

In Torra (1997), we can also find examples of non-linear functions to implement φ and the proof
that OWA and WM are particular cases of WOWA operators.

Some well-known WM operators are the mean, min, max. These operators, along with the
median, are also OWA and WOWA operators. We obtain these OWA operators using OWA
vectors wmean, wmin, wmax, and wmed, which, for n = 3, are given respectively as wmean =
[1/3, 1/3, 1/3], wmin = [0, 0, 1], wmax = [1, 0, 0], and wmed = [0, 1, 0].

4. WM, OWA and WOWA filters for mean images
In (TORRES et al., 2015, 2016a), we introduced OWA filters for images, whereas in Torres

et al. (2016b), we introduced WOWA filters. OWA and WOWA filters consist in applying OWA
weight vectors in the values inside a sliding window over a given image. Below, we describe
WOWA filters Fwowa

w,p,φ , defined in Torres et al. (2016b), to obtain a filtered image Iwowaw,p,φ from an
image I in 3 polarizations.
Procedure Fwowa

w,p,φ (I) for mean images
1. Obtain the mean image II from a given image I , taking the simple average of the pixel

values of the polarizations HH, HV and VV from I .
2. Transform a weight matrix M associated to a predefined neighborhood, into a vector

with n positions p.
3. For each pixel in position (x, y) in image II , transform a window II ′ around (x, y),

according to the predefined neighborhood, into a vector of n positions a.
4. Using a, derive σ and aσ.
5. Using w0, p0 and φ0, derive weight vector ω.
6. Calculate fwowaw,p,φ (a1, ..., an).
7. Make the result become the value for position (x, y) in the filtered image:
IIwowaw,p,φ (x, y) = fwowaw,p,φ (a1, ..., an).
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Given a position (x, y) in a mean image II and considering a 3 × 3 window, in step 3 we
would obtain a vector a, with 9 positions, as (I(x−1, y−1), I(x−1, y), I(x−1, y+1), I(x, y−
1), I(x, y), I(x, y + 1), I(x+ 1, y − 1), I(x+ 1, y), I(x+ 1, y + 1)). Vector p is obtained in a
similar way from M in step 1. Using a 5× 5 window, vector a has 25 positions.

OWA and WM filters F owa
w and Fwm

p are obtained in a similar but simpler way. Note that
Fwm
p is a convolution filter, whereas F owa

w is an OSF. A WOWA filter is a combination of
convolution filters and OSFs, enjoying the advantages of both.

5. Experiments
We conducted a series of experiments using intensity SAR images in L-band with wave-

lengths of [30cm,1m] and frequencies of [1MHz,2GHz], in polarizations HH, HV and VV. We
used a fragment of a phantom described in (SALDANHA, 2013) (see Figure 3) and a set of 50
synthetic images, simulated using the parameters for Wishart distribution estimated in (SILVA
et al., 2013) for an area in the Brazilian Amazon region. Each simulated image has 240 × 240
pixels and was generated with 1-look.

We employed Genetic Algorithms (GAs) (HOLLAND, 1975) to learn the weight vectors.
Given an image, our experiments have been performed as follows: (a) the parameters of the
distributions associated to the various regions in the image are estimated, (b) a set of simulated
images is randomly created using the distributions parameters, (c) the set of simulated images
is partitioned in two sets, one for training and one for testing, and (d) the best weight vector
found by the GA on the training set is used on the test set for evaluation.

For the GA experiments, we performed a 5-fold cross-validation, using 40 images for train-
ing and 10 for testing in each fold. We used a 5×5 window and the weight vectors p and w thus
have 9 positions each. The elements in the initial population in each experiment were chosen at
random. In (TORRES et al., 2016b) we investigated three strategies to learn the weight vectors
using GAs, using only the HH polarization and 3 × 3 windows: i) learn vectors p and w at the
same time, ii) learn p then w, and iii) learn w then p. Since the first strategy yielded the best
results, we adopted it in the present work.

The GA was run on a machine with the following specifications: Intel i7, CPU 2.60 GHz,
RAM with 16 GB, Windows 10, Fortran with Force 2.0 compiler. Considering 30 generations
and 5 folds, with 10 images in each fold, and 36 elements in the population, the GA processing
took around 1 hour, for no matter the value of the other parameters and operators. As expected,
the largest number of generations and the largest the populations, the longer the training process
takes. Also, as the number of generations doubled, so roughly did the training time. Finally, as
the size of the populations doubled, the training time was gradually lower than the double.

After a series of small experiments with various alternatives, we decided to fully test the
proposed procedure considering a set of parametrizations for the GA: 3 population sizes (18,
36 and 72 elements), 2 numbers of generations (10 and 30), 2 mutation rates (2 and .8), 3
seeds for random numbers (2, 70 and 271). We used roulette as the selection mechanism in
all experiments. As fitness function for each fold in each parametrization, we took the mean
NMSE value of the resulting filtered images.

Considering the five folds, the best overall result was obtained using OWA operators with
seed 70, 36 elements in the population, mutation rate .2 and 30 generations1. Table 1 brings the
results obtained with filters whose parameters have been learned with the GAs with seed 70.
In the Table 1, we also report the results for SDNLM and R-Lee filters and main OSF filters.
For SDNLM and R-Lee filters, the best parametrizations were chosen after a few experiments,
using 5 × 5 filtering window for both filters, with 3 × 3 patches, and significance level of 5%
for SDNLM, and with ENL = 1 for R-Lee.

1In the experiments we used mutation strategy A, described in Torres et al. (2016a, 2016b).
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Table 1. NMSE and SSIM mean and standard deviation for 5 folds.
NMSE SSIM

mean std mean std
Simulated (no filter) 0.4317 6.08E-3 0.0396 8.00E-9

SDNLM 0.0339 8.94E-4 0.0352 1.10E-8
R-Lee 0.0460 1.14E-3 0.0378 4.00E-9

OWA 0.0283 7.32E-5 0.0134 0.00

WOWA 0.0290 6.44E-5 0.0068 4.00E-9
WM 0.0289 5.91E-5 0.0081 1.00E-9

Mean 0.0287 4.53E-4 0.0129 1.59E-3
Median 0.0549 9.68E-4 0.0130 1.47E-3

Minimum 0.6806 2.67E-3 0.0130 4.36E-4
Maximum 3.6345 8.22E-2 0.0118 3.10E-3

We see in Table 1 that the best NMSE mean results are obtained with OWA, WOWA and
WM filters, followed by the mean filter, and then by SDNLM and Lee filters. For SSIM, the
higher the better, and we see that a different order of quality is obtained, with the best results
obtained by Lee filter, followed by and SDNLM and OWA filters. Note, however, that in this
application the simulated images obtained a better SSIM than the filtered ones.

6. Conclusions and future work

We investigated WM, OWA and WOWA filters in mean images (obtained from intensity
images polarizations HH, HV and VV), respectively based on the parametrized families of
operators of Weighted Means, Ordered Weighted Average (OWA) and Weighted OWA, upon
an application on SAR imagery, using simulated images derived from from a real-world scene.
We used 5 × 5 windows, and a Genetic Algorithm to tune the parameters of these families of
operators, and the mean values of NMSE as fitness function.

We compared the obtained filters with model-based filters SDNLM (TORRES et al., 2014)
and R-Lee (LEE et al., 2006), that use full polarimetric images. The best results for NMSE were
obtained by WM, OWA and WOWA filters, whereas for SSIM, the model-dependent filters fared
better.

In the future, we intend to study the influence of initial populations in the GA, and address
multi-optimization issues to learn the best weights considering more than one quality index.
We also intend to investigate the use of WM, OWA and WOWA filters with full polarimetric
images.
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