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ABSTRACT 

 

The objective of this work is to evaluate the accuracy of the 

positioning calculation and the guidance of Remotely 

Piloted Aircraft (RPA) using concepts of photogrammetry 

from images generated by onboard cameras, aiming at 

autonomous air navigation. The technique of image 

navigation uses orthomosaic and Digital Surface Models 

(DSM) as a reference and images obtained by the onboard 

camera during flight. When corresponding points are found 

between these images and the orthomosaic it is possible to 

calculate the position and attitudes of the perspective center 

of the camera. With the applied methodology it was possible 

to verify average errors in the order of 0.5 meters in the 

positioning and 0.5º in the angle of attitudes of the camera. 

So the navigation through the image can reach values equal 

to or higher than the GNSS receivers without differential 

correction. Therefore, navigating through the image is a 

good alternative to enable autonomous navigation. 

Key words — Autonomy, Navigation, Security, 

Photogrammetry, Remote Sensing, Spatial Resection and 

RPA. 

1. INTRODUCTION 

 

Currently the use of RPA has increased considerably and 

became indispensable for several applications where human 

intervention is dull, dirty and dangerous. For example 

monitoring of the coast [1], search and rescue operation [2], 

border surveillance [3], precision agriculture [4], forest 

control [5], forest fires [6], topography [7], photogrammetry 

[8] [9] [10], among others. 

An application that deserves to be highlighted has been 

the navigation of RPA, by automatic image processing, that 

is, determination of its position exclusively from features in 

images generated by an onboard sensor [11]. 

For autonomous RPA arrive in a desired location, it must 

first be known in which position it is. Thus, the information 

aircraft positioning is importance for navigation, because 

without it is impossible to navigate autonomously [12].  

To solve these problems, one approach is the use of 

georeferenced images of orbital or airborne sensors of the 

region of interest and compares them with images obtained 

at the time of flight. By finding points in common in the two 

images, the position of the RPA can be determined 

autonomously [13].  

For the navigation of a RPA 3D coordinates and attitudes 

are required, this information is usually obtained through 

GNSS and INS. The inertial systems are autonomous and 

determine their position in space through accelerometers 

and gyroscopes. However, over time the position and 

attitude calculation using only the INS becomes inaccurate, 

because the INS accumulates errors [14].  

In addition to the dependence of GNSS there is still 

concern about the possibility of electronic attacks on the 

GNSS signal, known as jamming or spoofing interference. 

These attacks can cut off the GNSS signal or decrease 

accuracy, causing the RPA to lose its location information 

or even simulate the GNSS signal and report wrong 

coordinate positions, and can even take control of the RPA, 

for more information [15].  

One of the approaches for autonomous navigation is the 

use of automatic terrain recognition techniques in images 

obtained by onboard sensors [16]. An automatic recognition 

with orthomosaic and DSM can be employed [11].  

In this case for the determination of the three-dimensional 

coordinates and the angles of attitude of the RPA, it is 

necessary to consider estimation errors [17] [18]. Through 

the equations of collinearity and adjustment by the method 

of least squares [19], it is possible to calculate the 

coordinates and the attitude of the RPA and their respective 

accuracy, indispensable to determine when the coordinates 

obtained by the images will be used to correct the INS. 

The primary objective of this article is analyze the 

accuracies of the coordinate of perspective center and 

attitude angles of an onboard camera on the RPA. For such, 

the difference between this calculate coordinate and a 

reference coordinate coming from the Bundle Block 

Adjustment (BBA) used to construct the orthomosaic and 

DSM will be analyzed. 

 

2. MATERIAL AND METHOD 

 

2.1 Collinearity Equations 

Projective transformation is a three dimensional 

transformation. This geometric transformation takes a 
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system from 3D system (Object Space) to 2D system (Image 

Space) and vice-versa. The mathematical model that 

translates this transformation is called the collinearity 

equation [18]. The collinearity equations are based on the 

concept that the object space, the perspective center 

(objective of the camera) and the image space are 

interconnected by a line.  

The 3 rotations between a coordinate system in the Image 

Space and the Object Space are defined by the parameters 

Omega (ω), Phi (ɸ) e Kappa (k) presented in Equation 01; 

being respectively the rotations around the X, Y and Z axes 

[20].  

𝑀 = [
𝑐𝑜𝑠 𝑐𝑜𝑠  𝑐𝑜𝑠 𝑠𝑒𝑛  + 𝑠𝑒𝑛 𝑠𝑒𝑛  𝑐𝑜𝑠  𝑠𝑒𝑛 𝑠𝑒𝑛  − 𝑐𝑜𝑠 𝑠𝑒𝑛 𝑐𝑜𝑠 

−𝑐𝑜𝑠 𝑠𝑒𝑛  𝑐𝑜𝑠 𝑐𝑜𝑠  − 𝑠𝑒𝑛 𝑠𝑒𝑛  𝑠𝑒𝑛  𝑠𝑒𝑛 𝑐𝑜𝑠  + 𝑐𝑜𝑠 𝑠𝑒𝑛  𝑠𝑒𝑛 
𝑠𝑒𝑛  −𝑠𝑒𝑛 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑐𝑜𝑠

] (1) 

 
In Equation 02 and 03 are visualized four parameters, 

namely: a scale factor (𝑓), and 3 translations (X-Xo), (Y-Yo) 

e (Z-Zo) between systems. It can be said that this 

transformation is of the isogonal type, since it has a single 

scale for the 3 axes of the two systems. In these equations 

we assemble the Collinearity Equations that connect the 

Object Space and Image Space, which are non-linear 

equations [20]. 

𝑥′ = (𝑥 − 𝑥0) = −𝑓.
𝑎11(𝑋−𝑋0)+𝑎12(𝑌−𝑌0)+𝑎13(𝑍−𝑍0)

𝑎31(𝑋−𝑋0)+𝑎32(𝑌−𝑌0)+𝑎33(𝑍−𝑍0)
 (2) 

 

𝑦′ = (𝑦 − 𝑦0) = −𝑓.
𝑎21(𝑋−𝑋0)+𝑎22(𝑌−𝑌0)+𝑎23(𝑍−𝑍0)

𝑎31(𝑋−𝑋0)+𝑎32(𝑌−𝑌0)+𝑎33(𝑍−𝑍0)
 (3) 

Where: 
 (𝑥′, 𝑦′) - coordinates in the fiducial system considering the 

displacement of the principal point; 

 (𝑥, 𝑦) - coordinates in the fiducial system; 

 (𝑥0, 𝑦0) - coordinates of the principal point in fiducial system; 

 (𝑋, 𝑌, 𝑍) - coordinates of the geodetics system; 

 (𝑋0, 𝑌0, 𝑍0) - coordinates of the perspective center in geodetics 

system; 

 𝑓 - Scale between fiducial and geodetics system; e 

 𝑎ij - Parameters by rotation matrix. 

 

2.2 Geometric Distortions in Photographic Images 

A raw image contains geometric distortions due to the 

influence of several intrinsic and extrinsic factors on the 

sensor. Thus, to obtain reliable metric information from 

images it is recommended that the sensor be calibrated. The 

main task in the photogrammetric process is to establish a 

strict geometric relation between the image and the object, 

to extract information from object only through the image 

[18]. The symmetrical radial distortions can be modeled by 

the even-numbered polynomial equations in the x and y 

components of the fiducial mark coordinate system. Usually 

only the coefficients 𝐾1, 𝐾2, and 𝐾3 are used [17]. 

𝑅 = √𝑥2 + 𝑦2 (4) 

𝛿𝑟𝑥𝑛 = 𝐾1. 𝑅2 + 𝐾2. 𝑅4 + 𝐾3. 𝑅6 + ⋯ + 𝐾𝑛. 𝑅2𝑛 (5) 
 

𝛿𝑟𝑦𝑛 = 𝐾1. 𝑅2 + 𝐾2. 𝑅4 + 𝐾3. 𝑅6 + ⋯ + 𝐾𝑛 . 𝑅2𝑛 (6) 
 

The tangential distortion comes from the manufacturer's 

inability to perfectly align the optical axes of the lens that 

compose an objective, resulting in the displacement of the 

image pixel. These distortions can be modeled using 

equations in the x and y components of the fiducial mark 

coordinate system, usually using only the coefficients 𝑝1 

and 𝑝2, as shown in Equations 8 and 9  [18]. 

𝛿𝑡𝑥 = 𝑝1. (𝑅2 + 2. 𝑥2) + 2. 𝑝2. 𝑥. 𝑦 (7) 
 

𝛿𝑡𝑦 = 𝑝2. (𝑅2 + 2. 𝑦2) + 2. 𝑝1. 𝑥. 𝑦 (8) 

In order to obtain a mathematical model that best 

represents the transformation between the object space and 

Image space, it is necessary add to the collinearity equations 

presented in Equations 2 and 3 the respective radial 

distortions (𝛿𝑟𝑥, 𝛿𝑟𝑦) and tangents (𝛿𝑡𝑥, 𝛿𝑡𝑦) in each 

component, presented in Equations 5, 6, 7 and 8. Besides the 

distortions, the coordinates of the principal point (𝑥0, 𝑦0) 

must also be considered and the scale is represented by the 

focal length of the camera (𝑓), as shown in Equations 9 and 

10. 

𝑥 = 𝑥0 + 𝛿𝑟𝑥 + 𝛿𝑡𝑥 − 𝑓.
𝑎11(𝑋−𝑋0)+𝑎12(𝑌−𝑌0)+𝑎13(𝑍−𝑍0)

𝑎31(𝑋−𝑋0)+𝑎32(𝑌−𝑌0)+𝑎33(𝑍−𝑍0)
 (9) 

 

𝑦 = 𝑦0 + 𝛿𝑟𝑦 + 𝛿𝑡𝑦 − 𝑓.
𝑎21(𝑋−𝑋0)+𝑎22(𝑌−𝑌0)+𝑎23(𝑍−𝑍0)

𝑎31(𝑋−𝑋0)+𝑎32(𝑌−𝑌0)+𝑎33(𝑍−𝑍0)
 (10) 

 

2.3 Solving Systems of Nonlinear Equations 

The resolution of the systems of nonlinear equations is 

used to calculate the transformation parameters of the 

collinearity equations, knowing only coordinate of 

homologous points in the object and image space [17]. 

For the calculation of the coordinates and attitudes of the 

perspective center of the camera, at least 3 points are 

necessary, when the number of equations is greater than the 

number of unknowns, which in this case is greater than 4 

points; we have a possible and indeterminate equations 

system. To solve this type of equations system and 

estimated the error, the Least Squares Method (LSM) is 

used. It can be solved by the matrix method, according to 

the equations 11, 12 and 13 [19].  

∆𝑋 = (𝐽𝑇 . 𝑃. 𝐽)−1. 𝐽𝑇 . 𝑃. (𝐿 − 𝐿0) (11) 
 

�̅� =  𝑋0 + ∆𝑋 (12) 
 

𝛴�̅� = |𝜎|. (𝐽𝑇 . 𝑃. 𝐽)−1 (13) 
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2.4 Surf and RANSAC 

The automatic point identification tests were performed 

using the Matlab Program and the Speeded Up Robust 

Features (SURF) [21] and RAndom SAmple Consensus 

(RANSAC) [22] algorithms. In these cases the identification 

of the homologous points is performed automatically, that 

is, without the human interference in the selection of these 

points [23]. 

The SURF algorithm performs the description of the 

characteristics in two images and then makes a 

correspondence between the characteristic points with the 

greatest similarity between them. However, these 

correspondences can cause erroneous matches between the 

homologous points of the image and orthomosaic. This can 

occur if one point in the image is more similar to the 

characteristics of a different point in the orthomosaic. 

 

  
(a) (b) 

Figure 1. a) Corresponding points with SURF only and b) 

Corresponding points with SURF and RANSAC. 

 

Figure 1a shows that in the identification of 

corresponding points using only the SURF there are some 

random points in the set of matched point. These points are 

erroneous identifications, being denominated outliers. 

The RANSAC algorithm is used to identify and remove 

these outliers. Figure 1b shows the set of matched points 

without the outliers. Although the RANSAC algorithm 

removes the vast majority of the random points, some 

outliers can still remain in the set of selected points, being 

this a factor that can insert errors in the determination of the 

position and attitude of the camera. 

 

3. RESULTS 

 

Tests were performed using the SURF associated with 

RANSAC, to remove the outliers. As a consequence, from 

39 photographs, only in 6 photographs it was not possible to 

calculate the spatial resection, since these photographs were 

oblique. In this case the SURF was not able to identify any 

of the corresponding points correctly. Two examples of that 

procedure are depicted in Figures 1a and 1b. 

To identify all points correctly a random selection of 

corresponding points was used. Since even after the removal 

of outliers by the RANSAC some homologous points may 

still be erroneously identified, even if the errors are visually 

small. 

 
Figure 2. Automatic identification of corresponding points 

through SURF / RANSAC. 

 

Figure 3 shows the box diagram of the results of the 

identification of homologous points using the SURF and 

RANSAC, in red box, algorithms associated to a random 

search by groups of points, which resulted in a low variance 

in the determination of the position and attitude of the 

camera in space. The cyan box represents the positioning 

errors when the correspondence of points was performed 

manually. 

 

 

Figure 3. Comparison of error distribution using SURF / 

RANSAC (Red box) and manually identification (Cyan box). 

 

4. DISCUSSION 

 

In the automatic identification, if there are still outliers 

among the six points chosen, it is possible to identify them 

by increasing the spatial resection variance. Thus, an 
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acceptance value for the variance can be set in order to 

accept the group of points. If the calculated variance is 

above the defined value the algorithm performs a new 

search for another group of points until it finds a group with 

acceptable variance. 

Comparing these results with the results of the manual 

identification it is verified that on average the positional 

variances and attitudes, when using the SURF and 

RANSAC algorithms, are larger than the variances of the 

manually identified points. 

Possibly the largest variances occurred due to errors of 

identification of homologous points made by SURF and that 

were small to be identified as outliers by RANSAC. For this 

reason, they were not removed, resulting in an increase in 

mean variance. Another factor that possibly influenced the 

increase of the variance was the grouping of the 

homologous points in some cases. 

 

5. CONCLUSIONS 

 

From the exposed in Figure 3 it was verified that there was a 

worsening in the accuracy between SURF/RANSAC 

method and the manual point’s selection. However, when 

compared to GNSS/INS provided by the Phantom 4 RPA 

there was a large increase in the accuracy of the data. 

The maximum errors ranged from -1.2 to +1.0 meters for 

Planimetric; -0.2 to +0.3 meters for altimetry and -1.0º to + 

1.0º for the attitude angles. Considering the error 

distribution, of Figure 3 it can be seen that for the 

positioning of the perspective center the interquartile range 

did not exceed 0.5m and for the attitude angles the 

interquartile range did not exceed 0.5º. Such accuracy is 

better than that provided by the GNSS/INS that does not 

have differential correction, usually used for real time 

navigation in most of the RPA. 
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