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ABSTRACT 

 

There is no optimal disturbance detection method without 

limitations that can be applied to all ecosystems. Different 

vegetation structures present different responses to seasonal 

variations inducing disturbance errors along geographical 

regions. This study applied the LandTrendr algorithm, 

developed in GEE platform, in order to examine its accuracy 

in different tropical seasonal biomes: Savanna and Atlantic 

Forest. LandTrendr was run by a default parameter 

configuration and compared to a large-scale reference 

dataset. In general, the Atlantic Forest presented higher 

accuracies than Savanna in the disturbance. Both biomes 

presented low producer’s accuracy for some years but high 

user’s accuracy for almost all years. These results are 

explained due to change detection in high seasonal areas is 

affected by seasonal modifications in spectral signature due 

to phenology, leading to misclassification of spectral changes 

as having human-induced changes.  Future researches can 

also follow-up this approach by exploring different 

disturbance detection algorithms and parameters simulations 

as well as the implementation of stratification by vegetation 

class in order to reach higher accuracies, reducing the effects 

of land cover type on climate fluctuations.  
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1. INTRODUCTION 

 

Monitor, analyze and detect disturbances in forested systems 

are critical processes with a myriad of techniques and 

algorithms [1]. Despite the range of methods in scientific 

literature, there is no optimal method that applies to all 

purposes [2], inducing each technique to particular strengths 

and weaknesses regarding to the omission and commission 

errors and target disturbance populations [3]. 

The Brazilian territory is divided into six continental 

biomes, from which Atlantic Forest and Savanna are 

considered world’s hotspot for conservation of biodiversity 

[4]. These biomes were subject to the most rapid land 

conversion in Brazil, almost 75% of the Atlantic Forest and 

50% of Savanna were already transformed into pastures and 

croplands, inducing a consistent understanding of the land 

cover changes upon these areas [5]. 

Nowadays, the establishment of Google Earth Engine 

(GEE) platform provided many advances in change detection 

studies, such as full access to satellite archives, 

straightforward management of time series stacks, and agile 

computation through parallel processing. These advances 

enable the creation of large-scale disturbance maps and also 

a user-friendly format to run disturbance detection algorithms 

[6]. However, estimating disturbance in tropical areas is not 

a trivial task since phenology affects the spectral signature of 

vegetation measured by satellites leading to misclassification 

of seasonal changes as disturbances [7]. Different vegetation 

domains presents different response to seasonal variations 

inducing disturbance errors along geographical regions or 

disturbance regimes [3]. 

This study examines the accuracy of Landsat-based 

detection of Trends in Disturbance and Recovery – 

LandTrendr [8], an automated trajectory based-image 

analysis algorithm, in its ability to map disturbances over two 

biomes (Savanna and Atlantic Forest) distributed across 

Minas Gerais State, Brazil. We were motivated by the 

following research question: how accurately an automated 

algorithm detects disturbance in different seasonal biomes? 

 

2. MATERIAL AND METHODS 

 

2.1. Study scenes 

 

Two areas dispersed across the Minas Gerais State were 

selected for this study (Figure 1a). These areas were delimited 

by the Worldwide Reference System version 2 (WRS-2) and 

represented two distinct Brazilian biomes: Savanna 

(Path/Row: 219/71) and Atlantic Forest (218/75) [9]. 

The Atlantic Forest biome is characterized mostly by 

evergreen and semideciduous forest formations. This region 

receives around 2,000 mm annual rainfall and mostly it does 

not show a climatological water deficit, leading to a low 

seasonality noise [9]. On the other hand, the Savanna biomes 

is characterized by a distinct dry season with monthly 

precipitation reaching zero millimeters (Figure 1b). This 

strong seasonality influences the forest dynamics resulting in 

a wide range of adaptive phenological strategies as leaves fall 

in Savanna trees [10].  
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Figure 1. Study area. 

 

2.2. Reference Data 
 

We selected two datasets to play as reference maps: (a) the 

Global Forest Change 2000 – 2017 (GFC), coming from 

Landsat time-series analysis in characterizing global forest 

loss from 2000 to 2017 [11]. Forest, on this map, was defined 

as canopy closure for all vegetation taller than 5m in height, 

and (b) the MapBiomas, which is an annual land-use and land 

use changes from 1984 to 2016 in the entire Brazilian 

territory [12]. 

We processed both reference datasets into a three step 

method: First, we applied a time filter from 2000 to 2016 

(common period for both datasets: 16 years) in order to make 

a comparable time analyze. Second, we created a forest mask 

by combining the MapBiomas vegetation classification for 

year 2000, and GFC tree canopy cover for year 2000 as well. 

Third, an annual change map was created by combining both 

reference datasets in each year of analysis. The aim of 

blending the reference datasets was to avoid potential 

individual misclassifications, keeping only disturbance pixels 

detected by these two reference maps. 

The general methodology is presented in Figure 2.  

 

 
Figure 2. General flowchart of the methodology. GFC: Global 

Forest Change dataset. 

 

2.3. LandTrendr disturbance detection 
 

Landsat Thematic Mapper (TM) and Operational Land 

Imager (OLI) time series from 2000 to 2016 were processed 

through LandTrendr [8]. LandTrendr is an automated 

trajectory based-image algorithm acting on a pixel level and 

capturing abrupt disturbance events, which utility has been 

demonstrated in different geographical regions for a wide 

range of dynamics related to different disturbance regimes 

[13]. 

Both Landsat datasets were derived from Landsat 

Surface Reflectance collection in GEE, presenting bottom of 

atmosphere reflectance calculated and high precision data 

stack generation. LandTrendr implementation was also 

processed in GEE. We ran LandTrendr with a fixed set of 

segmentation parameter values [14] and did not make 

assumptions about parameter testing for the study area.   

 

2.4. Data Agreement 
 

The data agreement step consisted to an accuracy analysis, 

comparing the LandTrendr disturbance map to the reference 

dataset created. This pixel level comparison required 

overlaying LandTrendr change map for each scene and year 

interval. After the datasets overlaid, we sampled 100 random 

points in the disturbance class of the reference dataset by each 

biome and year. The same amount of points was also 

generated to the not disturbance class (100 points x 2 

disturbance classes x 2 biomes x 16 years = 6,400 total). 

A confusion matrix was build and overall accuracy, 

user’s accuracy for disturbance class (inversely related to 

commission error), and producer’s accuracy for disturbance 
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class (inversely related to omission error) were calculated by 

each year and biome. Boxplot charts displayed the dataset 

variability in order to support the data agreement analysis. 

 

3. RESULTS 

 

Figure 3 illustrates the data agreement analysis of 

LandTrendr for Savanna and Atlantic Forest in each year of 

the time series. The LandTrendr agreement with reference 

data presented overall accuracy ranging from 53 to 80% 

along the period for Savanna biome, and 58 to 84% for 

Atlantic Forest. For the disturbance class, producer’s 

accuracy representing disturbance pixels in the reference 

dataset and omitted by the algorithm, ranged from 8% to 62% 

for Savanna and 20% to 70% for Atlantic Forest. User’s 

accuracy, representing not disturbed pixels but detected by 

LandTrendr, showed 69% to 96% of accuracy for Savanna 

and 80% to 97% for Atlantic Forest. 

 

Figure 3. Accuracy analysis. 

 

Boxplot charts demonstrated higher mean accuracies for 

the Atlantic Forest biome and lower accuracies variability 

along the period comparing to the Savanna biome (Figure 4). 

 

 
Figure 4. Savanna (Sav.) and Atlantic Forest biome (A.F.) 

accuracy boxplots along the time series. 
 

4. DISCUSSION 

 

Accuracy measures demonstrated a contrast between the 

Savanna and Atlantic Forest domain. The lower accuracies in 

Savanna regions indicated a troublesome disturbance 

detection, which can be related to the seasonal noise. Most of 

the woody Savanna species are deciduous formations, and the 

total or partial leaf fall during the dry season can be a noise 

in disturbance detection studies [7], [15]. 

Comparing producer’ and user’s accuracy, we 

demonstrated that the rate of disturbance pixels omitted by 

LandTrendr is higher than pixels included to the disturbance 

class. This low commission error indicated that LandTrendr 

is barely affected by seasonal noise in these regions, since the 

leaf fall by seasonality induces to the inclusion of not 

disturbed pixels to a disturbance class. 

The LandTrendr run through default parameter 

configuration, which was set in a different forest region 

across the globe [14]. Since our aim was not reach the best 

detection accuracy through simulations, perhaps a better 

algorithm configuration could provide higher accuracies in 

the study area. In addition, the idea of stratification should be 

applied running LandTrendr with distinct parameter 

configuration for each biome, focusing on a particular 

accuracy measure as producer’s accuracy, which presented 

low values for both areas. 

According to boxplot charts, the Atlantic Forest 

presented lower variability along the years than Savanna for 

all three measures of accuracies. These results also emphasize 

the natural disturbances in Savanna regions, indicating how 

unpredictable the seasonal noise can be in a time series [7]. 

Another valuable point is the user-friendly 

characteristic of GEE to access and analyze disturbance data. 

This singular aspect allows the user to run simulations from 

different algorithms. In addition, the cloud-based format 

performs massive computation capabilities supporting forest 

disturbance detection in large-scale applications. 
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5. CONCLUSIONS 

 

In this study, we have exploited the LandTrendr algorithm in 

GEE to detect forest disturbance in two distinct Brazilian 

vegetation domains, Savanna and Atlantic Forest. We 

demonstrated that LandTrendr has potential to detect 

disturbance in forest environments, and the user-friendly 

format of GEE platform provides easy user access, besides 

the faster computation in large-scale applications. 

In general, LandTrendr algorithm presented higher 

accuracies for Atlantic Forest, which is less disturbed by 

seasonal noise than Savannas. The overall accuracy and 

user´s accuracy of Atlantic Forest was satisfactory showing 

agreement with the reference dataset. Although Savanna 

biome presented poor accuracies, it also earns attention since 

the high seasonality affects change detection in this biome. 

Future researches can also follow-up this approach by 

exploring different disturbance detection algorithms and 

parameters simulations as well as the implementation of 

stratification by vegetation class in order to reach higher 

accuracies, reducing the effects of land cover type on climate 

fluctuations. 
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