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ABSTRACT 

 
The use of fire for land management is one of the main 

anthropic activities that have led to the impoverishment of 

tropical forests. Therefore, mapping these areas is 

paramount for public policies implementation. Currently, 

machine learning techniques have shown very effective 

results in the classification of land cover on extensive areas. 

This paper aims to compare the Random Forest (RF) and 

Support Vector Machine (SVM) algorithms performance on 

burned areas mapping in Amazon. Using a multiresolution 

segmentation algorithm applied to a Landsat image, the 

training dataset included 300 objects of burned and non-

burned areas. Additionally, 24 attributes were tested in both 

RF and SVM approaches. An overall classification accuracy 

of 91% was achieved by RF and SVM models using spectral 

and geometric attributes. Nonetheless, regarding the 

omissions and inclusion errors, SVM models had the best 

performance on burned areas mapping.  

 

Key words — Pattern recognition, geobia, fire, 

degradation. 

 

1. INTRODUCTION 

 

Human activities have been one of the major causes of 

global climate changes such as the droughts regime 

frequency in tropical forests, which makes the ecosystems 

vulnerable to wildfires events [1, 2]. Since tropical 

ecosystems have global relevance by playing an important 

role in climate regulation and providing ecosystem services 

[3], forest fire events may result in imbalance due to 

negative impacts on these natural environmental. The use of 

fire for land management is one of the main anthropic 

activities that have led to the impoverishment of tropical 

forests by altering their functioning and sctructure. As a 

result the biodiversity and hydrological and energetics 

processes are affected, contributing for the carbon emission 

increasing [1]. Thus, it is important to evaluate the 

occurrence of fire as a way of understanding its dynamics. 

In general, a decrease of carbon emission into the 

atmosphere is expected when the deforestation rate reduces 

[4]. However, areas with reduction in deforestation rates 

presented a 59% increase in fire occurrence [5]. These 

outcomes point to the need of considering fire as one of the 

major threats to forest systems, being critically important in 

Reducing Emissions from Deforestation and Forest 

Degradation (REDD) programs [5, 6]. 

The technological advances in remote sensing field and 

Geographic Information Systems (GIS) have significantly 

contributed to the amount of studies focusing on mapping 

and managing of fire affected areas [7, 8, 9, 10]. Since the 

mapping of burned areas is paramount to understand the 

spatial distribution of fires, as well as to evaluate the social, 

economic and environmental impacts of these events [11], 

several methodologies have been proposed to improve the 

accuracy of fire scar mapping [7, 8, 12]. 

In the literature, there is a growing trend for machine 

learning classification methodologies [7, 13]. Two of most 

popular approaches involving land cover tasks are Random 

Forest (RF) and Support Vector Machine (SVM) techniques 

[14, 15] due to their overall accurately results [16, 13]. 

These approaches apply robust methods based on the 

use of input data to perform the hierarchical training of the 

model, used as a reference for object based image 

classification [14]. These techniques use different layers of 

information of spectral and spatial features representation 

from the investigated targets in order to perform a 

classification, resulting in clustering of similar targets [17, 

18]. In the case of RF algorithm, it creates several decision 

trees by combining different possibilities for the input data 

set (spectral and spatial features) and evaluates the lower 

entropy error between them [17]. Each tree contributes to a 

single vote for the most frequent class. Similarly, SVM 

algorithm is a binary based method of classifiers that creates 

an optimal linear hyperplane through maximizing the 

distance from the data points of each class [18].  

In this context, this paper compares the learning 

performance of RF and SVM algorithms for burned areas 

mapping in the Amazon Forest by using an object based 

approach with a spectral and geometric feature sets. The 

outcomes may be used as subsidies for public policy actions 

for forest fire monitoring, contributing to the use of 

automatic techniques in the burned areas detection and 

mapping. 
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 2. MATERIAL AND METHODS 

 

2.1. Study Area  

 

The studied area is located in the southern region between 

Novo Progresso and Altamira municipalities, in the State of 

Pará (Figure 1). With an area of 12.800 km², this region is 

predominantly composed of the Dense Ombrophilous Forest 

[19], and the anthropic activities is represented by small 

subsistence farmers, which are associated with 

governmental settlements projects [20]. 

 

 
Figure 1. Location of the studied area in the State of 

Pará, Brazil. 

  

2.2. Data acquisition  

 

In order to identify a representative area for fire occurrence 

in Amazon forest, an annually search of the fire hotspots 

spatial distribution was carried out. The fire data was 

acquired from Fire Information for Resource Management 

System (FIRMS) as a MODIS derived product from Terra 

and Aqua satellites (MCD14ML, collection 6) with 1 km of 

spatial resolution. In this study, only active fire data with 

confidence level higher than 80% was considered. Then, the 

fire data was combined to the Landsat World Reference 

System in order to identify areas with a higher fire 

occurrence for the scene identification. 

After the spatialization process, a Collection-1 and 

Level-2 Landsat/OLI imagery (227/065 path/row) acquired 

from U.S. Geological Survey (http://earthexplorer.usgs.gov) 

was used. In this data set is included the bands sensitive to 

the blue (0.435 µm - 0.451 µm), green (0.452 µm - 0.512 

µm), red (0.636 µm - 0.673 µm), near infrared (0.851 µm -

0.819 µm) short wave infrared (1.566 µm - 1.651 µm) 

sections of the electromagnetic spectrum with 30m of spatial 

resolution. The acquired image was radiometrically, 

atmospherically and geometrically corrected and resampled 

to UTM projection zone 21 south.  

 In addition to the reflectance bands, the Normalized 

Burn Ratio (NBR), Normalized Difference Vegetation Index 

(NDVI) and Normalized Difference Water Index (NDWI) 

spectral indices were computed as inputs to the training 

phase.  

 

2.3. Supervised object-based classification 

 

The object based classification was performed by using a 

multiresolution segmentation algorithm applied to the 

Landsat image composition in order to delineate the image 

into homogeneous regions [21]. Here, the homogeneity 

threshold was defined as 0.4 for shape and 0.4 for 

compactness. Also, the segment size was established based 

on a scale parameter of 180 with equivalent weight for all 

10 bands. As a result of the segmentation procedure, 3614 

regions were obtained. The mean and standard deviation for 

each object in all bands were calculated as spectral features 

and shape index, index border, rectangular fit e degree of 

skeleton branching as the geometric features, totaling 24 

features. Afterwards, 300 objects were taken as training 

samples of the model, divided in burned areas and non-

burned areas.  

In order to carry out the classification, two approaches 

were adopted. In the first one, the RF and SVM algorithms 

was performed using only spectral attributes. Secondly, the 

geometric attributes were added to the model.  

RF classifier relies on predictions from an ensemble of 

decision trees created using a trained data set. Given the 

high dimensionality of remotely sensed data, RF classifier 

uses the lower entropy between the subsets in order to select 

the best features to describe the classes of interest. Hence, 

each tree accounts for one vote based on internal validation 

technique for estimating how well the resulting has been 

performed. The final classification is obtained by averaging 

all the probabilities calculated by all trees [17]. SVM 

algorithm works by creating a linear separating hyperplane 

which is able to distinguish two different target classes. The 

hyperplane is created by maximizing distance between two 

support vectors from the trained dataset. Similar to RF 

classifier, SVM can be successfully applied for large input 

dimensionality data due to its validation technique that relies 

on weighting function (kernel). Furthermore, kernel function 

allows nonlinear separating boundaries to be learned [18].  

Finally, the burned area identification was performed by 

visual interpretation of the satellite imagery. Afterwards it 

was used to generate a reference map and validate the tested 

models. This reference map was compared to the outcomes 

produced by the RF and SVM models. Also, the confusion 

matrix and coefficient kappa were calculated for each 

classification and a z-test was carried out (p < 0.05). 

 

3. RESULTS AND DISCUSSION 

 

Table 1 shows the overall accuracy and kappa values 

produced by the classification using RF and SVM models. 

Also, the omission and inclusion errors are presented for all 

classifications. 
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In general, all the results for burned area classification 

showed overall accuracy higher than 90%. Also, of all 

approaches tested in this study, the SVM and RF classifiers 

presented similar overall accuracy, differing only by the 

lower kappa value when the geometric attributes were added 

to the model (Table 1). In this case, the kappa value for RF 

model was significantly lower than SVM model (p < 0.05). 

 
Table 1 – Inclusion and omission errors, overall accuracy 

and kappa value for RF and SVM approaches. 

Class 

RF spectral 
RF 

Spectral/geometric 

Inclusion 
Error 

Omission 
Error 

Inclusion 
Error 

Omission 
Error 

Burned area 32.63 21.18 40.31 24.88 
Others 2.93 5.15 3.48 6.85 

Overall Accuracy 0.93 0.91 

Kappa 0.69 0.61 

 
SVM spectral 

SVM 
Spectral/geometric 

Burned area 35.57 14.78 40.27 13.05 
Others 2.09 6.35 1.88 7.91 
Overall Accuracy 0.93 0.91 
Kappa 0.69 0.66 

 

It is noted that both RF and SVM tested methods had 

their overall accuracy decreased from 0.93 to 0.91 when the 

geometric features were added to the model. Similarly, the 

addition of geometric features also influenced the kappa 

value decrease. 

The results for the SVM classification using only 

spectral features demonstrated that the algorithm omitted 

14.78% of the burned areas, which is a better performance if 

compared to the RF method (21.18%). Regarding the 

inclusion error, even though the RF method classifies non 

burned area as burned areas less than the SVM algorithm, 

this difference was only 3%.  

According to [14], misclassification errors may be 

related to the object-based segmentation process by 

including objects with information from both burned and 

non-burned classes. It is commonly observed in forest dense 

that was just burned and lands with sparsely shrubs. In this 

case, the use of an image with finer spatial resolution may 

contribute to better results in the segmentation phase once it 

improves the discrimination of regions (based on the 

homogeneity threshold), and consequently, it improves the 

separability of the target classes.   

Comparing the performance of the algorithms with and 

without the geometric features, it is noticed that, unlike the 

RF, SVM produced a slight lower omission error from 

14.78% to 13.05%. Conversely, in both cases RF and SVM 

the inclusion errors produced were increased. To sum up, 

the geometric features addition led to a decrease of the 

machine learning algorithm capacity for discriminating 

burned area. It is evidenced by the increase of the inclusion 

error in both RF and SVM classifier. 

The non-metric multidimensional scaling (NMDS), 

evidenced that there was a low separability between the 

targets regarding the shape index, index border, rectangular 

fit e degree of skeleton branching (Figure 3). Because the 

burned area occurrence was varied in the landscape, 

identifying a specific geometric pattern was difficult. This 

reason may have contributed to a greater confusion in the 

training of the classifiers, resulting in an increase of 

inclusion error when the geometric attributes were added to 

the model. As suggested by [22], the algorithm performance 

may negatively be affected when new features that does not 

provide representative information about the target class are 

included. From this perspective, the spectral features 

provided more discriminating information on burned 

affected areas. 

 

 
Figure 2. Comparison between the reference map and 

SVM classification using only spectral attributes. 
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Figure 3.Analysis of the dissimilarity between the 

geometric attributes. 

 

5. CONCLUSION 

 

In summary, comparing the two classifiers, the results 

demonstrated that SVM classifier was less exclusive than 

RF classifier for mapping of burned area once it presented a 

lower omission error value. Also, adding geometric features 

to the models decreased the performance of both RF and 

SVM algorithms. Further studies should consider using 

temporal attributes in order to investigate improvement of 

the models. 
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