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ABSTRACT 
 
Remote sensing (RS) images can improve the knowledge on 
the exchanges of sediment between the main rivers and 
floodplains as it provides a synoptic view of water bodies, at 
local and regional scales. The monitoring of total suspended 
solids (TSS) is important because the proportion of organic 
to inorganic particles varies in time and space and is linked 
to biogeochemistry of floodplain environments. Moreover, 
this proportion maybe affected by climate change as well as  
land use and land cover change. In order to grasp the spatial 
distribution of suspended sediments in Amazon Floodplains 
lakes, we have applied Monte Carlo simulation for 
calibrating several empirical and semi-analytical algorithms 
to estimate TSS based on in-situ Rrs and TSS concentration 
measured between 2015-2017. Calibrated models were then 
applied to atmospheric corrected Landsat/8, Sentinel 2-A, 
and CBERS-4 scenes. The results showed that is possible to 
estimate TSS on the floodplains using these three satellites, 
with errors lower than 30%. 
 

Key words — Curuai Lake, CBERS, Landsat, Sentinel, 
TSS. 
 

1. INTRODUCTION 
 
Amazon Floodplains play an essential role in the 
biogeochemical cycle of the Amazon River Basin, altering 
the transport of particulate and dissolved matter as the 
Solimões/Amazon River flows towards the Atlantic Ocean 
[1]. These biogeochemical processes are influenced by both 
hydrological and Land Use/Land Cover Change (LUCC) 
processes at several spatiotemporal scales [2].  

Among several floodplain lake systems along the lower 
Amazon region, the Lago Grande de Curuai (LGC) is one of 
the lakes subjected to the largest interseasonal changes. With 
a flooded area of around 3500 km² in the high water season, 
the LGC becomes a complex system of about 30 
interconnected lakes, linked to the Amazon River by several 
channels [2]. when during the low water season, it shrinks to 
around 600 km² of open water. This complexity leads to high 
variability in sediment concentration across time and space in 

this floodplain lake system.  This variability is mainly 
dependent on natural effects such as the hydrological basin 
regime, local precipitation, and floodplain geomorphology 
[3,4]. In addition, not only suspended sediments, but other 
optically active constituents such Colored Dissolved Organic 
Matter (CDOM) and Chlorophyll-a (Chl-a) are also co-
varying in space and time [2,5] increasing  optical complexity 
of those lake waters.  

Estimates of particulate materials are fundamental for 
characterizing the sediment fluxes between Amazon River 
and the floodplains and for evaluating the impacts of climate 
change, LUCC and carbon exchange between the floodplains 
and the atmosphere [4,5] since TSS is composed of both 
organic and inorganic particles whose proportion and origin 
varies seasonally [2]. 

 In that sense, the use of empirical and semi-analytical 
models based on orbital remote sensing represents a 
complement to in-situ TSS measurements since it provides a 
synoptic view of water bodies, giving the spatial dimension 
not provided by in-situ information. Furthermore, the new 
generation of Earth Observation Satellites such as Landsat 8, 
Sentinel 2 and CBERS-4 are apt to provide high-quality water 
remote sensing products. However, the development of 
universal algorithms is challenged by the high spatial and 
temporal variability in optical active constituents (OAC) 
among the floodplain lakes, demanding robust approaches to 
cope with such optical complexity. Therefore,  this paper 
evaluates the calibration of empirical [8] and semi-analytical 
[9] algorithms for TSS retrievals. The Monte Carlo 
simulation was applied in simulated Rrs from Landsat-8/OLI, 
Sentinel-2/MSI and CBERS-4/WFI, and then, validation of 
these models was performed to atmospherically corrected 
images of these three satellites. 

 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area  
 
LGC area (Figure 1) located between Parintins-AM and 
Almerim-PA cities, the is representative of the lower Amazon 
floodplains [2,10] having been the object of many studies 
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[2,7]. Sediment concentrations in LGC vary in a range of 1 – 
1000 mg L-1 from high to low water periods, respectively [2]. 

  

Figure 1 Study Area 

 
2.2. Radiometric and Limnological data 
 
The radiometric dataset was acquired using three 
intercalibrated TriOS Ramses spectroradiometers that 
operate in 400 – 900 nm range measuring Downward 
Irradiance (Ed), Sky Radiance (Lsky) and Water-Leaving 
Radiance (LT) simultaneously. Remote Sensing Reflectance 
was calculated (Equation 1) using Mobley [9] correction for 
sky reflectance (ρ). 
 

𝑅 =  
∗

     (1)  

 
Approximated 150 spectra were acquired for each station. 
Initially, all spectra were visually inspected to remove 
obvious outliers. After that, the representative spectra for 
each station were selected based on the minimum sum value 
of the difference between median Rrs values at each 
wavelength in relation to the actual Rrs value at each 
wavelength. After spectra selection, in situ Rrs was used to 
simulate OLI, MSI and WFI spectral bands using their 
appropriate spectral response function (SRF) [12–14]. Total 
Suspended Solids (TSS) concentration was determined from 
samples acquired concurrently to Rrs measurements 
according to Wetzel and Likens [15] methodology (Table 1). 
All dataset was acquired in four field campaigns carried out 
between 2015 and 2017. A total of 94 samples of TSS and Rrs 
were used in this work.  

Table 1 Mean, Minimum, Maximum, Standard Deviation (SD) and 
number of TSS samples in the field campaigns. 

Mean 
TSS 

(mgL-1) 

Min 
TSS 

(mgL-1) 

Max 
TSS 

(mgL-1) 

SD TSS 
(mgL-1) 

Sample Size 

32.61 5.25 235.5 31.84 94 

 
 
2.3. Satellite Data 
 

The satellite images used in this work were acquired from 
three earth observation satellites: Landsat 8/OLI, Sentinel 
2/MSI and CBERS-4/WFI on August/2017. These images are 
concurently to field samples. MSI images were from 08/08, 
OLI images were from 10/08 and WFI images were from 
11/08. The August/2017 field campaigns were carried out 
from Aug/08 to Aug/12. For all images, the 6S radiative 
transfer code [16] was applied to correct the atmosphere 
effects using a modified version of Py6S [17] developed at 
LabISA (http://www.dpi.inpe.br/labisa/) by Martins, V. and 
Carlos, F. The atmospheric parameters (Water Vapour, 
Ozone, AOT) were obtained from MODIS Level-2 
atmospheric data. For OLI and MSI, a glint correction [18] 
were also applied. 

 
2.4. TSS Modeling 

 
The modeling of TSS concentrations using remote sensing 
techniques generally are made using empirical and semi-
analytical algorithms [19]. In this work, we compare an 
empirical approach using a log transformation in both TSS 
and Rrs data to a the semi-analytical model formulation 
proposed by Nechad et al. [9] (Equation 2) re-calibrated with 
the in-situ dataset. 
 

  𝑇𝑆𝑆 =
∗ ,

, /
− 𝐵    (2)  

 
Where 𝐴 , 𝐵  and 𝐶  are Nechad et al. [9] coefficients for 
band Bi of each sensor. For calibration of both empirical and 
Nechad models, a Monte Carlo simulation with 10.000 
repetitions was performed. At each repetition, 70% of the 
dataset was set apart for training and 30% for validation, 
resulting in 66 training samples and 28 validation samples. At 
each repetition both R² and Mean Absolute Percentage Error 
(MAPE) statistics were calculated to evaluate the 
performance of models with in-situ Rrs dataset. Then, the 
model parameters (i.e. slope, intercept) were obtained 
through the median values of the coefficients for the models. 
After that, the validation step was based on in-situ calibrated 
models applied to their respective atmospheric corrected 
images from August/2017.  

 
3. RESULTS 

 
3.1. Model Calibration and validation with field Rrs 

 
3.1.1 Calibration with field Rrs for Landsat 8 / OLI 
 
Monte Carlo simulation (Figure 2) based on field Rrs for OLI 
simulated models shows that both, Nechad and Log models 
presented good performance (MAPE < 30%, R² > 0.75). The 
best result was provided by Nechad model using NIR band 
(B5), median MAPE lower than 25% and median R² values > 
0.85. The performance of Nechad models were better than the 
log models when applied to NIR bands and worse when 
applied to VIS bands.  
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Figure 2 MAPE (Left) and R² (Right) values obtained through 
MC simulation for in-situ simulated Rrs OLI bands 

 
3.1.2 Calibration with field Rrs for Sentinel 2 / MSI 
 
Regarding Monte Carlo simulation results (Figure 3) for MSI 
simulated Rrs, they were quite similar to those observed for 
OLI. Better results were obtained for NIR bands (B5, B6, B7, 
B8) with MAPE values lower than 25% and R² higher than 
0.8. The increase in correlation at higher wavelengths was 
also observed. MSI, as observed for OLI Nechad models, also 
presented better results at NIR bands and Log models 
presented better results at VIS bands. 

 

Figure 3 MAPE (Left) and R² (Right) values obtained through 
MC simulation for in-situ simulated Rrs MSI bands 

3.1.3 Calibration with field Rrs  for CBERS-4 / WFI 
 
For the WFI Monte Carlo simulation (Figure 4) also showed 
results quite similar to those of OLI and MSI models, mainly 
for green and red bands (WFI-B3 and WFI-B4). At NIR MSI 
band the results were close to that of MSI B8. 

 

Figure 4 MAPE (Left) and R² (Right) values obtained through 
MC simulation for in-situ simulated Rrs WFI bands 

  
3.2. Image Model Validation 
 
The models obtained from the calibration step were applied 
to atmosphere corrected OLI, MSI and WFI images. The 
results are presented in Figure 5. Although better results for 
NIR bands of OLI, MSI and WFI sensors using field Rrs, 
when these models were applied to the August/2017 scene, 
the best results for OLI were observed for the green band for 
both Log and Nechad models (MAPE < 20%). Regarding 
MSI models, the better results were observed in models using 
the red-edge (B5) bands, with Log model presenting slightly 
better results (MAPE < 22%). Finally, for WFI the lower 
MAPE value was for red band (B4) (MAPE < 38%).    
 

  

Figure 5 MAPE (Left) and R² (Right) obtained from validation 
in OLI, MSI and WFI scenes for August/2017. 

 
4. DISCUSSION 

 
The results obtained from the calibration and validation steps 
using in-situ Rrs dataset showed that better results for the 
three sensors evaluated were observed applying NIR bands. 
These results could be attributed to the range of TSS 
concentration and variability of OACs during the field 
campaigns. As the signal in the infrared bands is less 
influenced by both chlorophyll and CDOM concentration 
[20], the seasonal variation in the concentration of these 
components along the different field campaigns are 
minimized. In addition, Rrs saturation in green and red bands 
also impacts the visible bands causing higher errors [19]. 
Regarding the Log and Nechad TSS model’s performance, in 
the VIS bands, Log models presents better results than those 
of Nechad. However, for NIR models, Nechad models 
presented better R² and MAPE values, except for the red-edge 
MSI B5 model. The observed results from the calibration step 
also show that the three sensors are similar regarding the 
band's performance (e.g. green and red bands) with very 
similar results. These close results are attributed to the similar 
SRF of WFI, OLI, and MSI at these bands. It is quite 
important this similarity among sensor’s performance 
because helps to create virtual constellations as they provide 
similar errors when referred to in situ Rrs.  

Regarding model validation in atmosphere corrected 
images, the three sensors provided a fair agreement with in-
situ TSS concentration on August/2017 field campaign. 
However, TSS concentration for these campaign presents 
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lower values (7 – 43.5 mgL-1) results are also different from 
those of the models using in-situ Rrs values. For OLI image 
validation models, the green band presents better results. As 
August/2017 field campaign presents higher levels of chl-a 
concentration (9.34 – 67.84 µgL-1), higher errors in the red 
band could be attributed to absorption of electromagnetic 
radiation in the red region of the spectrum by the Chl-a [21]. 
At NIR OLI band, higher errors are due to low Rrs signal with 
low TSS concentration. For MSI models, the better results are 
for red-edge band (B5). This band is centered at Chl-a 
reflectance peak (705 nm) what could be reducing the errors 
as TSS is a sum of inorganic and organic suspended particles, 
and the phytoplanktons presented in these waters contribute 
to backscattering [20]. WFI models present acceptable results 
only for the red band (MAPE < 37%). Higher errors for WFI 
could be attributed to uncertainties on the atmospheric 
correction procedure and time-lag between satellite and in-
situ measurements (four days). 

 
5. CONCLUSIONS 

 
This study shows the applicability of TSS models and 
satellite data in the Amazon floodplain lake. Moreover, there 
is a possibility to use these sensors as a virtual constellation 
that improves the revisit time in the Amazon Floodplains. 
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