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ABSTRACT

Urban tree species mapping provides valuable insights into
the green infrastructure management of cities. However,
information on the spatial distribution of tree species in urban
areas is usually acquired with costly procedures such as field
surveys. Remote sensing combined with field data provides
an efficient way to obtain spatially explicit information on
tree species distribution over broad spatial extents. In this
study, we investigate the utility of light detection and ranging
(LiDAR) metrics to improve tree species classification in
a highly diverse tropical urban setting. LiDAR metrics
were estimated using a statistical approach that retrieved
surface normals. Moreover, we explore the use of LiDAR
reflectivity intensity and canopy height to discriminate among
species. The results show that intensity and canopy height
improve the classification accuracy, while the use of surface
normals reduces it. However, more research is needed
to evaluate the utility of surface normals since the species
have highly variable patterns, particularly in the nz direction.

Key words – Surface normals, LIDAR intensity, Canopy
structure.

1. INTRODUCTION

Urban trees provide essential ecosystem services such as air
quality improvement and surface temperature reduction [1].
Information on the spatial distribution of tree species in urban
environments is increasingly needed to plan and develop
green infrastructures in cities. However, this information is
usually acquired with ground-based surveys, which is costly
and operationally prohibitive if performed in large cities (>
1 million inhabitants). A promising way to obtain spatially
explicit information on tree species over broad spatial extents
is by integrating field data with remote sensing images.

Tree species mapping at the individual tree crown (ITC)
level requires very-high-resolution (VHR) images (pixel <
1 m). While the potential VHR satellite images combined
with machine learning methods to automatically discriminate
among tree species in urban and forest environments has
been demonstrated [2–4], the potential of aerial photographs
remains poorly investigated, particularly in tropical urban
settings. Aerial photographs are acquired with only four
(red, green, blue, and near-infrared) channels, thus providing
limited spectral information on the ground objects. When
spectral information is poorly available, it is worth using other
types of data to retrieve species-specific characteristics that
may improve the classification accuracy.

For example, LiDAR data can be used to extract structural
characteristics of ITCs, such as the arrangement of leaves
and branches or tree height. LiDAR sensors emit tens
of thousands of laser pulses (≈ 900 nm wavelength) per
second and measure the time delay from pulse emission to
return, enabling the modeling of the canopy structure in three
dimensions (3D). 3-D point clouds can be used to describe the
geometric surface properties of the tree crowns. To do this,
one can compute surface normals of tree leaves and estimate
species-specific leaf angle and orientation. Surface normals
are important attributes of 3-D point clouds. It has been
widely used in various tasks, such as point cloud registration,
classification, segmentation, etc.

In this work, we investigate the utility of surface normals
in 3-D point clouds to improve tree species classification in a
highly diverse tropical urban setting. Moreover, we explore
other LiDAR-derived metrics, such as reflectivity intensity
and canopy height, to classify urban trees.

2. MATERIAL AND METHODS

2.1. Study area

The study area comprises the urbanized domain of the Grajaú
neighborhood in Rio de Janeiro, Brazil. The site has about
325 ha, and more than 100 tree species [5]. The mean annual
temperature is 23.2±5.5◦C, and yearly precipitation is 1,278
mm.

2.2. Aerial photographs and airborne LiDAR data

The aerial photographs were taken in October 2019 under
clear sky conditions with the aerial digital camera UltraCam-
Eagle Prime (Vexcel, Inc.). The photographs were taken
with four channels (red, green, blue, and near-infrared,
RGBNIR) with a ground sample distance of 0.15 m. The
photogrammetric flight was planned to collect photographs
with an endlap and sidelad of 80% and 40%, respectively.
The overlapping photographs were used to generate a
digital surface model (DSM) employed for orthorectification.
LiDAR data was acquired with the Trimble Harrier 68i
(Trimble Germany GmbH) sensor. The sensor fires laser
pulses with a frequency of 400 kHz and has a field of view
(FOV) of 60◦. For LiDAR data acquisition, the flight height
was about 700 m, which resulted in point clouds with a
density of 12 points/m2.
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2.3. Individual tree crown dataset

The ITC dataset was adapted from [5]. Several ITCs
were manually outlined in RGB compositions of the aerial
photographs on a scale of 1:250. The ITCs were identified to
the species level in the field by a botanical specialist. Since
the work of [5] was based on aerial photographs acquired in
2015, we removed ITCs that were not present in 2019. A total
of 283 ITCs were outlined, comprising nine species, as shown
in Table 1.

Species Nº ITCs
Terminalia catappa 130
Pachira aquatica 35
Licania tomentosa 45
Senna siamea 24
Tamarindus indica 24
Caesalpinia pluviosa 25

Table 1: Tree species and number of individual tree crowns
(ITCs)

2.4. LiDAR-derived metrics

We computed several metrics for each point in the LiDAR
point cloud and produced rasters with the same resolution
(pixel size = 0.15 meters) as the aerial photographs. To do
this, we computed the mean of the LiDAR metrics of points
within cells on size 0.15×0.15 meters.

2.4.1. Estimating surface normals in 3-D point clouds

For a given 3-D point cloud χ, we used the first order 3-
D plane fitting method [6] to estimate surface normals of
tree leaves. Our approach works in two steps. Initially,
the neighboring points i of a query point pi are determined
with a predefined radius of a sphere s, as proposed by [7].
Subsequently, the normal of a plane tangent to the surface
(see Fig. 1) is estimated in a least-square sense. In practice,
since pi is on a plane, its coordinates satisfy the equation:

di = n⃗ · (pi −
1

k

k∑
i=1

pi) (1)

where k is the number of neighbors to the query point,
the n⃗ = [nx, ny, nz]

T denotes the normal vector, and di
represents the distance from a point pi ∈ q to the plane.

Since tree leaves change both its orientation and position
during the LiDAR scanning (e.g., leaf motion due to wind),
a closed-form solution based on eigenvector and eigenvalue
correspondences from covariance matrix M ∈ ℜ3x3 is the
method of choice for the normal estimation, as it is invariant
to rigid motion:

M =
1

k

k∑
i=1

(pi −
1

k

k∑
i=1

pi) · (pi −
1

k

k∑
i=1

pi)
T (2)

As a result, a normal vector is assigned for each pi. The
normal vector can be decomposed by orientation in the nx,
ny, and nz directions. In addition, we can also compute an

Figure 1: Surface normals estimation scheme.

approximation of the surface curvature around pi using the
eigenvalues λj of M , as follows [7]:

curv =
λ0

λ0 + λ1 + λ2
(3)

2.4.2. Intensity and canopy high model

LiDAR intensity is a measure of the reflectivity of the laser
pulse and is measured for every point. Intensity is a function
of the wavelength used and is proportional to the strength
of the returns, varying with the composition of the surface
objects. Canopy height models (CHM) represent the actual
height of the objects. They are computed by subtracting the
digital terrain model (DTM) from a LiDAR point cloud to
create a normalized dataset in which the ground points equal
zero.

2.5. Experimental set-up

2.5.1. Selection of training and testing samples

Labeled pixels from the manually delineated ITCs (Section
2.3) were extracted from the image to compose a dataset with
10 attributes (red, green, blue, NIR, nx, ny, nz, curvature,
intensity, and CHM) and 283 ITCs (Table 1). Then, we
computed the mean of each attribute per ITC to reduce
computational cost. This dataset was randomly partitioned
into 70% of the ITCs for training and the remaining 30%
for testing. We repeated the above splitting procedure 1000
times, randomly choosing ITCs to train and test the classifier
at each realization. Systematic changes in the selection
of training and testing crowns allowed us to assess the
robustness of the classification models and better understand
the relevance of LiDAR-derived metrics to classify the
species.

2.5.2. ITC-level classification

Aiming to verify if the LiDAR-derived metrics improve the
accuracy of tree species classification, we performed ITC-
level classification using support vector machines with the
radial basis function (SVM-RBF) kernel, which proved useful
in previous studies (e.g., [4]). We optimized the SVM-RBF
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Figure 2: Boxplots showing the variability of the LiDAR-derived metrics of each tree species. The central lines within each box are
the medians. The boxes’ edges represent the upper and lower quartiles. The values were normalized in the [0, 1] range.

parameters C and γ using a grid search strategy and trained
the model with the RGBNIR bands alone and in combination
with the LiDAR metrics, one at a time. We assessed the
classification accuracy by computing the Kappa index.

3. RESULTS AND DISCUSSION

Table 2 shows the Kappa values obtained for the urban
tree species classification with SVM-RBF. Using only the
RGBNIR bands, the Kappa was 0.486±0.059. After
including the surface normals (nx, ny and nz) and curvature in
the classification process, we observed a decrease in Kappa
of up to 0.062. Among the surface normal metrics, nz
provided the best results but decreased Kappa compared
to the RGBNIR dataset. The highest increase in Kappa
was observed after combining intensity and CHM with the
RGBNIR bands.

Dataset Kappa (mean±SD)
RGBNIR 0.486±0.059
RGBNIR_nx 0.437±0.063
RGBNIR_ny 0.424±0.060
RGBNIR_nz 0.440±0.058
RGBNIR_curv 0.439±0.064
RGBNIR_intensity 0.499±0.064
RGBNIR_chm 0.504±0.065

Table 2: Mean±Standard deviation of Kappa obtained after
classifying urban tree species with SVM-RBF. The classification

was performed using RGBNIR bands and LiDAR-derived
metrics.

Fig. 2 shows the distribution of the LiDAR-derived metrics
for each species. One can note that the median of nz,
intensity, and CHM is highly variable among the species.
Intensity and CHM, in particular, can capture species-
specific differences in canopy structure, thus improving the
classification accuracy.

We perform species classification by computing the mean
of each feature (RGBNIR bands and LiDAR-derived metrics)
per ITC. Thus, the spatial context was not considered in
the classification process. In future studies, we intend
to use convolutional neural networks (CNNs), a deep
learning method that uses convolutional operations for feature
extraction. CNNs explore the spatial relationship between
neighboring pixels and have been successfully used to classify
tree species [8].

4. CONCLUSIONS

This study aimed to improve urban tree species classification
with LiDAR-derived metrics. We found that LiDAR intensity
and canopy height with RGBNIR bands provide the best
results. The use of surface normals reduced the classification
accuracy. However, more research is needed to evaluate
the utility of surface normals because of the species’ highly
variable patterns, particularly in the nz direction. Future
studies will focus on using CNNs and different approaches
to fuse RGBNIR bands with LiDAR-derived metrics.
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