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ABSTRACT 

 

The eutrophication of reservoirs significantly impacts human 

health and environmental security. However, in situ water 

quality monitoring can be expensive once it includes 

equipment and human resources. An effective proxy for 

water quality is the Trophic State Index (TSI) Chlorophyll-a 

(chl-a) based. Remote sensing techniques have helped the 

authorities and scientific community to map TSI worldwide. 

Then, this study aimed to develop a remote sensing-based TSI 

algorithm and estimate the TSI spatiotemporal distribution in 

a reservoir in Brazil. The chl-a concentration was used as a 

proxy to TSI and classified into three classes: OligoMeso, 

EutroSuper, and Hyper. The calibrated algorithm was applied 

to the Jaguari-Jacareí reservoir to obtain TSI between 2013 

and 2022. Classification results achieved an overall accuracy 

of 75% for a validation dataset. Although the general pattern 

of the TSI in the reservoir is majority OligoMeso, the results 

indicate two patterns established according to dry and wet 

seasons. 
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Modelling, Random Forest. 

 

1. INTRODUCTION 
 

The world demand for water has always been one of the main 

concerns of world climate conferences [1]. Although Brazil 

has the most significant volume of freshwater in the world 

[2], increasingly intense land use and land cover changes may 

directly affect the quality of available water [3,4]. One of the 

most critical indicators of water quality is its eutrophication 

level, which increases with anthropogenic inputs into aquatic 

systems, nutrient inputs being a major concern. The leading 

indicators of the trophic state are the concentrations of 

phosphorus, nitrogen, and chlorophyll-a [5]. The Trophic 

State Index (TSI) [6,7] is an effective indicator of inland 

water quality because it is a stable parameter in time [8]. Chl-

a is a highly coted method since it represents an integrated 

response to both nutrients [9]. However, collecting samples 

along reservoirs is time and cost consuming, needing other 

approaches to reduce the cost.  Satellite remote sensing may 

provide an alternative way to retrieve TSI at higher 

spatiotemporal resolution [10,11]. The Operational Land 

Imager (OLI), onboard Landsat-8 platform, has been used 

since its launch, in 2013, to derive inland and ocean water 

quality products [12]. Thus, this paper aims to assess the 

spatial and temporal variability of TSI in a reservoir in 

Southeast Brazil by using Landsat-8/OLI images by a TSI 

algorithm. 

 

2. MATERIAL AND METHODS 

 

2.1. Study area 

 

The study area comprised the Jaguari-Jacareí reservoir (Fig. 

1), the main suppliers of the Cantareira reservoirs system, 

which is responsible for supplying 8.8 million people in the 

metropolitan area of São Paulo. The Jaguari-Jacareí reservoir 

has a total capacity of 808.12 hm³ and 1,027/203 km² of 

contribution area [13]. The Jacareí reservoir is in a 

downstream position to the Jaguari. The Jaguari-Jacareí 

reservoir was one of the most affected reservoirs by the 

historical drought during 2013/2014 in São Paulo State 

(Brazil) [14]. Detailed information about the reservoir is 

descripted in Domingues (2019) [15]. 

 

 
Figure 1. The Jaguari-Jacareí reservoir, São Paulo, Brazil 

(MSI RGB-432 composition on September 18, 2022). 
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2.2. In situ and satellite remote sensing datasets 

 

The in situ dataset used for model development comprises 

346 samples for chl-a concentration and remote sensing 

reflectance (Rrs) collected in seven reservoirs: Billings, 

Funil, Ibitinga, Itaipu, Nova Avanhadava, Promissão and 

Três Marias; all of them located in Southeast Brazil, collected 

during 2005 and 2021 [16]. The TSI were grouped into three 

classes described in [17] (Table 1), according to chl-a 

concentration, and each class was well represented (Fig. 2). 

For model validation, in situ chl-a concentration data was 

provided by Companhia Ambiental de São Paulo (CETESB). 

 

Classes Chlorophyll-a concentration (mg/m³) 

1 - OligoMeso chl-a ≤ 11.03 

2 - EutroSuper 11.03 < chl-a ≤   69.05 

3- Hyper chl-a > 69.05  

Table 1 - Chlorophyll-based classification of Trophic State 

Index (TSI) for reservoirs in São Paulo. 

 

 
Figure 2. Data frequency for each TSI class based on 346 in-

situ samples. 

 

The in situ measured Rrs (ranging from 400-900 nm) 

were used to simulate the OLI/Landsat-8 bands considering 

their respective spectral response function for the 

development of the model. OLI provides multispectral data 

with nine optical spectral bands, ranging from visible to 

shortwave infrared (SWIR), with a spatial resolution of 30 m, 

radiometric resolution of 12-bits, and a 16-days revisit period.  

 

2.3. TSI model 

 

A Random Forest (RF) machine learning algorithm, one of 

the well-known supervised classifiers [18], was used to 

predict TSI on the Jaguari-Jacareí reservoir over time. The 

classifier takes a dataset as input and, by aleatory resample it 

with reposition (bootstrapping), creates n different decision 

trees, which votes for the output class. The RF classifier 

proved to be one of the most accurate machine learning 

approaches and useful for retrieving water quality parameters 

[7]. 

Thirteen features were used as input data for RF model: 

four bands simulated from OLI (blue, green, red, and NIR), 

three Simple Band Ratios (red/green, NIR/green, NIR/red), 

three Normalized Index (red-green/red+green, NIR-

green/NIR+green, NIR-red/ NIR+red) and three Spectral 

Slope (red-green/(665-560), NIR-green/(865-560), NIR-

red/(865-665)) [9]. A Monte Carlo (MC) simulation was 

performed (1,000 iterations) over our in situ dataset to 

evaluated the accuracy of the TSI model. The MC randomly 

divided the dataset in training (80%) and validation sets 

(20%), generating different models through iterations.  This 

research selected the best model according to the best global 

accuracy. 

 

2.4. Validation and application to satellite data 

 

A total of eight samples of chl-a concentration were 

obtained on the Jaguari-Jacareí reservoir from CETESB [19] 

between the 2013 and 2022 years, considering a window of 

±2 days in relation to the OLI/Landsat-8 overpass, 

considering cloud free pixels. It was assumed that, since TSI 

is a more stable parameter, this time lag will not be sufficient 

to change the reservoir's condition. These data were related 

to the Landsat/OLI Rrs to validate the TSI machine learning 

calibrated using the LabISA database. 

For time series analysis, 71 OLI surface reflectance 

scenes were obtained from Landsat Collection 2 Level 2, 

between 2013 and 2022, except 2015. OLI scenes for 2015 

were overlooked because of the limited number of pixels for 

the entire reservoir because of the peak of drought [20]. The 

level of the reservoir reached the lowest historical value (< 

10%), and in that condition, the estimates would present a 

bias due to the low representativity of the total area. 

 

 

3. RESULTS AND DISCUSSION 

 

The confusion matrix and precision metrics of the model for 

both in situ and CETESB data validation (Figure 3) have 

resulted in an accuracy of 91% and 75%, respectively.  

   

 

Figure 3. Classification confusion matrix validation of the 

model for (a) in situ and (b) CETESB datasets. 
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         All classes were well-modelled, even for the class 

which represents the lowest values of chl-a concentration 

(OligoMeso: < 11.03 mg/m³). There were no samples of class 

3 (Hyper) on the CETESB dataset, which is why no 

classification on the matrix was done. 

The annual mean of TSI along the reservoir displays a 

seasonal pattern according to the wet (summer) or dry 

(winter) seasons in Southeast Brazil (Figure 4). The higher 

TSI level in February may be explained by the high summer 

air temperature and nutrients inputs due to precipitation, 

which provide an ideal condition for the phytoplankton 

growth [21]. In addition, the rain may carry a considerable 

amount of nutrients to the water bodies, including phosphorus 

and nitrogen. Moreover, the high levels of surface solar 

radiation, common in the summer, have direct relationships 

with chl-a [22].  

 

 

Figure 4. The yearly mean of precipitation (top) and the 

monthly occurrence percentage of the satellite-derived Trophic 

State Index classes (below) in the Jaguari-Jacareí reservoir 

between 2013 and 2022. 

 
The spatial distribution of TSI in the reservoir (Figure 

5) highlights the difference between the seasons and shows a 

difference between the reservoirs as well, mainly during the 

wet season. Therefore, two scenes representing dry (July, 

Figure 5a) and wet (February, Figure 5b) were selected to 

demonstrate that behavior. The accumulated precipitation 

during February and July was 141.2 mm and 9.2 mm, 

respectively. During the dry season, it is possible to notice a 

more homogeneous distribution represented by the 

OligoMeso class, while in February (wet season), the other 

classes (EutroSuper and Hyper) are also significantly present. 

The low downstream flow in February in the Jacareí reservoir 

could be a factor that contributes to a higher water residence 

time, and this condition favors algae blooms. 

 

Figure 5. Spatial distribution of TSI in the Jaguari-Jacareí 

reservoir for (a) dry and (b) wet seasons, and (c) the frequency 

(number of pixels) of TSI classes for each image. 

 

Some variables may affect the environmental conditions 

in the water column, such as precipitation, wind speed, and 

water-flow [8,20]. In this case, the precipitation and 

downstream flow may be the main variables related to TSI 

variable in the reservoir studied (Table 2). 

 
 Vol (%) Natural flow 

(m³/s) 

Downstream flow 

(m³/s) 

February 41.2 35.4 0.5 

July 40.8 6.2 1.2 

Table 2. Mean of the hydrodynamics conditions in the Jaguari-

Jacareí reservoir during February and July, 2022. 

 
4. CONCLUSIONS 

 

Water availability concerns not only the quantity and access 

to it but also the quality of it. Monitoring the variability of the 

water quality in reservoirs may be expensive, mainly in huge 

countries like Brazil. Remote sensing techniques and 

modeling can provide an effective way to retrieve 

information about a lot of water-bodies quality at the same 

time, at a low cost. The Trophic State Index has been used as 

an efficient water quality indicator worldwide, which is why 

it is important to develop models that can be applied to 

several different environmental conditions. Previous in situ 

datasets can be used for training and validation of the 

algorithms in order to obtain spectral response patterns for 

given TSI. In this paper, the best model was applied to 

Landsat-8 images, and three trophic state classes between 

2013 and 2022 were estimated. The results demonstrated that 

the model with grouped classes of TSI can explain the 
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reservoir trophic state spatial-temporally with an accuracy of 

75%. This efficient classification can provide valuable spatial 

and temporal information on the conditions of the Brazilian 

reservoirs for policy makers to support inland water 

sustainable management. Additionally, this work is an initial 

effort to understand how climatic and hydrological forcings 

may have altered the behavior of the TSI in this reservoir in 

recent decades. 
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